[1] Sarduman A, Pusane A E, Takn Z C. On the construction of regular QC-LDPC codes with low error floor[J]. IEEE Commun. Lett., 2020, 24(1): 25-28.
[2] Lu T, He X, Kang P, et al. Parity-check matrix partitioning for efficient layered decoding of QC-LDPC codes[J]. IEEE Trans. Commun., 2023, 71(6): 3207-3220.
[4] Amirzade F, Sadeghi M R, Panario D. QC-LDPC codes with large column weight and free of small size ETSs[J]. IEEE Commun. Lett., 2022, 26(3): 500-504.
[5] Majdzade M, Gholami M. On the class of high-rate QC-LDPC codes with girth 8 from sequences satisfied in GCD condition[J]. IEEE Commun. Lett., 2020, 24(7): 1391-1394.
[6] Tasdighi A, Boutillon E. Integer ring sieve for constructing compact QC-LDPC codes with girths 8, 10, and 12[J]. IEEE Trans. Inf. Theory, 2022, 68(1): 35-46.
[7] Kim D, Kim I, Cho H, et al. Performance analysis of QC-LDPC codes constructed by using Golomb rulers[C]// Asia Pacific Conf. on Communications (APCC), 2023: 301-302.
[8] Kim I, Kojima T, Song H-Y. Some short-length girth-8 QC-LDPC codes from primes of the form t2+1[J]. IEEE Commun. Lett., 2022, 26(6): 1211-1215.
[9] Karimi B, Banihashemi A H. Construction of irregular protograph-based QC-LDPC codes with low error floor[J]. IEEE Trans. Commun., 2021, 69(1): 3-18.
[12] Zhang G, Ni M, Hu Y, et al. Quasi-cyclic LDPC codes with girth at least eight based on disjoint difference sets[J]. IEEE Commun. Lett., 2023, 27(1): 55-59.