• Chinese Optics Letters
  • Vol. 20, Issue 2, 023601 (2022)
Jingjing Hong1、2, Xingping Zhou1、2, Rui Zhuang1、2, Wei Peng1、2, Jiawei Liu1、2, Aiping Liu1、2、*, and Qin Wang1、2
Author Affiliations
  • 1Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • 2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • show less
    DOI: 10.3788/COL202220.023601 Cite this Article Set citation alerts
    Jingjing Hong, Xingping Zhou, Rui Zhuang, Wei Peng, Jiawei Liu, Aiping Liu, Qin Wang. Nanoparticle trapping by counter-surface plasmon polariton lens[J]. Chinese Optics Letters, 2022, 20(2): 023601 Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288(1986).

    [2] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769(1987).

    [3] M. Zhou, H. Yang, J. Di, E. Zhao. Manipulation on human red blood cells with femtosecond optical tweezers. Chin. Opt. Lett., 6, 919(2008).

    [4] B. S. Ahluwalia, P. McCourt, T. Huser, O. G. Hellesø. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express, 18, 21053(2010).

    [5] O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, B. S. Ahluwalia. Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab. Chip., 12, 3436(2012).

    [6] Y. Pang, R. Gordon. Optical trapping of a single protein. Nano Lett., 12, 402(2012).

    [7] F. Properzi, M. Logozzi, S. Fais. Exosomes: the future of biomarkers in medicine. Biomark. Med., 7, 769(2013).

    [8] F. Svedberg, Z. Li, H. Xu, M. Käll. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett., 6, 2639(2006).

    [9] J. Shen, J. Wang, C. Zhang, C. Min, H. Fang, L. Du, S. Zhu, X. C. Yuan. Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering. Appl. Phys. Lett., 103, 191119(2013).

    [10] A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, X. Yuan. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam. Plasmonics, 13, 991(2018).

    [11] J. Yu, X. Tong, C. Li, Y. Huang, A. Ye. Using optical tweezers to investigate the specific single-interaction between apoA-I molecule and ABCA1 on living cells. Chin. Opt. Lett., 11, 091701(2013).

    [12] G. Rui, Q. Zhan. Trapping of resonant metallic nanoparticles with engineered vectorial optical field. Nanophotonics, 3, 351(2014).

    [13] X. Peng, C. Chen, B. Chen, Y. Peng, M. Zhou, X. Yang, D. Deng. Optically trapping Rayleigh particles by using focused partially coherent multi-rotating elliptical Gaussian beams. Chin. Opt. Lett., 14, 011405(2016).

    [14] P. Polimeno, A. Magazzù, M. A. Iatì, F. Patti, R. Saija, C. D. Esposti Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, O. M. Maragò. Optical tweezers and their applications. J. Quantum Spectrosc. Radiat. Transfer, 218, 131(2018).

    [15] G. Rui, Y. Li, S. Zhou, Y. Wang, B. Gu, Y. Cui, Q. Zhan. Optically induced rotation of Rayleigh particles by arbitrary photonic spin. Photon. Res., 7, 69(2019).

    [16] A. Huang, D. Chen, H. Li, D. Tang, B. Yu, J. Li, J. Qu. Three-dimensional tracking of multiple particles in large depth of field using dual-objective bifocal plane imaging. Chin. Opt. Lett., 18, 071701(2020).

    [17] A. Ashkin, J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517(1987).

    [18] A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron., 6, 841(2000).

    [19] F. M. Fazal, S. M. Block. Optical tweezers study life under tension. Nat. Photon., 5, 318(2011).

    [20] D. G. Kotsifaki, S. N. Chormaic. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics, 8, 1227(2019).

    [21] C. Bai, J. Chen, Y. Zhang, S. Kanwal, D. Zhang, Q. Zhan. Shift of the surface plasmon polariton interference pattern in symmetrical arc slit structures and its application to Rayleigh metallic particle trapping. Opt. Express, 28, 21210(2020).

    [22] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667(1998).

    [23] X. Ren, A. Liu, C. Zou, L. Wang, Y. Cai, F. Sun, G. Guo, G. Guo. Interference of surface plasmon polaritons from a “point” source. Appl. Phys. Lett., 98, 201113(2011).

    [24] L. Zhang, L. Wang, Y. Wu, R. Tai. Plasmonic Luneburg lens and plasmonic nano-coupler. Chin. Opt. Lett., 18, 092401(2020).

    [25] K. Mujeeb, M. Faryad, A. Lakhtakia, J. V. Urbina. Surface-plasmonic sensor using a columnar thin film in the grating-coupled configuration [Invited]. Chin. Opt. Lett., 19, 083601(2021).

    [26] X. Xu, D. J. Thomson, J. Yan. Optimisation and scaling effect of dual-waveguide optical trapping in the SOI platform. Opt. Express, 28, 33285(2020).

    [27] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370(1972).

    [28] H. R. Philipp. Optical properties of silicon nitride. J. Electrochem. Soc., 120, 295(1973).

    [29] E. D. Palik. Handbook of Optical Constants of Solids, 3(1998).

    [30] G. M. Hale, M. R. Querry. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt., 12, 555(1973).

    Data from CrossRef

    [1] Feng Xu, Yang Liu, Chi Zhang, Min Jiang, Jiahui Zhang, Guanghui Wang, Fei Xu, Yanqing Lu. Optically levitated conveyor belt based on polarization-dependent metasurface lens arrays. Optics Letters, 47, 2194(2022).

    Jingjing Hong, Xingping Zhou, Rui Zhuang, Wei Peng, Jiawei Liu, Aiping Liu, Qin Wang. Nanoparticle trapping by counter-surface plasmon polariton lens[J]. Chinese Optics Letters, 2022, 20(2): 023601
    Download Citation