• Opto-Electronic Engineering
  • Vol. 48, Issue 3, 200368 (2021)
Zhao Lijuan1、2、3, Liang Ruoyu1, Zhao Haiying1, and Xu Zhiniu1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2021.200368 Cite this Article
    Zhao Lijuan, Liang Ruoyu, Zhao Haiying, Xu Zhiniu. Design of a photonic crystal fiber with low confinement loss and high birefringence[J]. Opto-Electronic Engineering, 2021, 48(3): 200368 Copy Citation Text show less
    References

    [1] Steel M J, Osgood R M. Polarization and dispersive properties of elliptical-hole photonic crystal fibers[J]. J Light Technol, 2001, 19(4): 495–503.

    [3] Robert P, Fourcade-Dutin C, Dauliat R, et al. Spectral correlation of four-wave mixing generated in a photonic crystal fiber pumped by a chirped pulse[J]. Opt Lett, 2020, 45(15): 4148–4151.

    [6] Yang K Y, Chau Y F, Huang Y W, et al. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding[J]. J Appl Phys, 2011, 109(9): 093103.

    [8] Liao J F, Huang T Y, Xiong Z Z, et al. Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion[J]. Optik, 2017, 135: 42–49.

    [9] Liu Q, Liu Q Y, Sun Y D, et al. A high-birefringent photonic quasi-crystal fiber with two elliptical air holes[J]. Optik, 2019, 184: 10–15.

    [11] Agbemabiese P A, Akowuah E K. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity[J]. Sci Rep, 2020, 10(1): 21182.

    [12] Liu M, Hou J Y, Yang X, et al. Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity[J]. Chin Phys B, 2018, 27(1): 014206.

    [13] Yang T Y, Wang E L, Jiang H M, et al. High birefringence photonic crystal fiber with high nonlinearity and low confinement loss[J]. Opt Express, 2015, 23(7): 8329–8337.

    [14] Sonne A, Ouchar A, Sonne K. Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber[J]. Optik, 2016, 127(1): 8–10.

    [15] Gao Y, Sima C, Cheng J, et al. Highly-birefringent and ultra-wideband low-loss photonic crystal fiber with rhombic and elliptical holes[J]. Opt Commun, 2019, 450: 172–175.

    [16] Prajapati Y K, Kumar R, Singh V. Design of a photonic crystal Fiber for dispersion compensation and sensing applications using modified air holes of the cladding[J]. Braz J Phys, 2019, 49(5): 745–751.

    [17] Li Y Q, Zhang L X, Fan H B, et al. A self-heterodyne detection Rayleigh Brillouin optical time domain analysis system[J]. Opt Commun, 2018, 427: 190–195.

    [20] Chen N, Zhang X D, Nie F K, et al. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure[J]. J Mod Opt, 2018, 65(12): 1459–1465.

    [23] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601–8639.

    [27] Zhang W, Li S G, Bao Y J, et al. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice[J]. Opt Commun, 2016, 359: 448–454.

    [29] Sun C Y, Wang W C, Jia H Z. A squeezed photonic crystal fiber for residual dispersion compensation with high birefringence over S+C+L+U wavelength bands[J]. Opt Commun, 2020, 458: 124757.

    Zhao Lijuan, Liang Ruoyu, Zhao Haiying, Xu Zhiniu. Design of a photonic crystal fiber with low confinement loss and high birefringence[J]. Opto-Electronic Engineering, 2021, 48(3): 200368
    Download Citation