Guangyu Liu, Fengzhou Fang. Precision Molding for Glass Optical Components[J]. Acta Optica Sinica, 2023, 43(8): 0822011

Search by keywords or author
- Acta Optica Sinica
- Vol. 43, Issue 8, 0822011 (2023)

Fig. 1. Schematic diagram of precision glass molding
![Comparison of volume,enthalpy change,and entropy change of glass with that of crystal during cooling[6]](/richHtml/gxxb/2023/43/8/0822011/img_02.jpg)
Fig. 2. Comparison of volume,enthalpy change,and entropy change of glass with that of crystal during cooling[6]
![Typical viscosity-temperature curve for soda-lime-silicate glass[29]](/Images/icon/loading.gif)
Fig. 3. Typical viscosity-temperature curve for soda-lime-silicate glass[29]
![Viscoelastic response[87]. (a) Creep; (b) stress relaxation](/Images/icon/loading.gif)
Fig. 4. Viscoelastic response[87]. (a) Creep; (b) stress relaxation
![Glass constitutive models[35]. (a) Maxwell model; (b) Kelvin model; (c) Burgers model](/Images/icon/loading.gif)
Fig. 5. Glass constitutive models[35]. (a) Maxwell model; (b) Kelvin model; (c) Burgers model
![Generalized Maxwell model[15]](/Images/icon/loading.gif)
Fig. 6. Generalized Maxwell model[15]
![Minimal uniaxial creep testing (MUCT) method[54]](/Images/icon/loading.gif)
Fig. 7. Minimal uniaxial creep testing (MUCT) method[54]
![Thermo-rheologically simple (TRS) behavior of glass[6]](/Images/icon/loading.gif)
Fig. 8. Thermo-rheologically simple (TRS) behavior of glass[6]
![Ultra precision grinding tungsten carbide mold[65]](/Images/icon/loading.gif)
Fig. 9. Ultra precision grinding tungsten carbide mold[65]
![NiP micropyramid array machined by micro-groove cutting[92]. (a) Residual burrs after cutting; (b) SEM diagram of surface morphology](/Images/icon/loading.gif)
Fig. 10. NiP micropyramid array machined by micro-groove cutting[92]. (a) Residual burrs after cutting; (b) SEM diagram of surface morphology
![Axial-feed fly cutting[104]](/Images/icon/loading.gif)
Fig. 11. Axial-feed fly cutting[104]
![Laser assisted cutting[109]. (a) In-process-heat laser assisted turning (In-LAT); (b) finished surface of WC mold](/Images/icon/loading.gif)
Fig. 12. Laser assisted cutting[109]. (a) In-process-heat laser assisted turning (In-LAT); (b) finished surface of WC mold
![Ultrasonic elliptical vibration cutting process[112]](/Images/icon/loading.gif)
Fig. 13. Ultrasonic elliptical vibration cutting process[112]
![Molds machined by ultrasonic elliptical vibration cutting[111]](/Images/icon/loading.gif)
Fig. 14. Molds machined by ultrasonic elliptical vibration cutting[111]
![SEM diagrams of GC mold and molded glass surface[116]. (a)(b) Mold surface; (c)(d) glass surface](/Images/icon/loading.gif)
Fig. 15. SEM diagrams of GC mold and molded glass surface[116]. (a)(b) Mold surface; (c)(d) glass surface
![Appearance of contact angle of glass and mold[40]](/Images/icon/loading.gif)
Fig. 16. Appearance of contact angle of glass and mold[40]
![Pt-Ir film degradation model[42]](/Images/icon/loading.gif)
Fig. 17. Pt-Ir film degradation model[42]
![Boundary conditions of different molding stages[152]](/Images/icon/loading.gif)
Fig. 18. Boundary conditions of different molding stages[152]
![Temperature distributions of WC mold and heat-resistant stainless steel mold after heating for 180 s[153]. (a) WC mold; (b) heat-resistant stainless steel mold](/Images/icon/loading.gif)
Fig. 19. Temperature distributions of WC mold and heat-resistant stainless steel mold after heating for 180 s[153]. (a) WC mold; (b) heat-resistant stainless steel mold
![Influence of near contact gap on temperature distribution[152]. (a) No near contact; (b) contact gap of 0.1 mm; (c) contact gap of 0.2 mm](/Images/icon/loading.gif)
Fig. 20. Influence of near contact gap on temperature distribution[152]. (a) No near contact; (b) contact gap of 0.1 mm; (c) contact gap of 0.2 mm
![Predicted residual stress distributions inside molded lens for different molding velocities[155]. (a) 0.005 mm/s; (b) 0.01 mm/s; (c) 0.05 mm/s](/Images/icon/loading.gif)
Fig. 21. Predicted residual stress distributions inside molded lens for different molding velocities[155]. (a) 0.005 mm/s; (b) 0.01 mm/s; (c) 0.05 mm/s
![Residual tangential stress inside glass wafer[43]](/Images/icon/loading.gif)
Fig. 22. Residual tangential stress inside glass wafer[43]
![Predicted residual stress distributions[73]. (a) Equivalent stress on lens surface; (b) shear stress σyz in cross section](/Images/icon/loading.gif)
Fig. 23. Predicted residual stress distributions[73]. (a) Equivalent stress on lens surface; (b) shear stress in cross section
![Results of ring compression test for different interfacial conditions[156]](/Images/icon/loading.gif)
Fig. 24. Results of ring compression test for different interfacial conditions[156]
![Comparison of friction calibration curves from simulations with experimental data for L-BAL35 glass[156]](/Images/icon/loading.gif)
Fig. 25. Comparison of friction calibration curves from simulations with experimental data for L-BAL35 glass[156]
![Simulation results of glass cylinder compression[157]](/Images/icon/loading.gif)
Fig. 26. Simulation results of glass cylinder compression[157]
![Influence of glass stress relaxation parameters on surface profile[159]](/Images/icon/loading.gif)
Fig. 27. Influence of glass stress relaxation parameters on surface profile[159]
![Accuracy of predicted position of glass wafer lens [162]](/Images/icon/loading.gif)
Fig. 28. Accuracy of predicted position of glass wafer lens [162]
![Predicted refractive index distribution in molded lens[163]](/Images/icon/loading.gif)
Fig. 29. Predicted refractive index distribution in molded lens[163]
![Schematic diagram of basic structure of molding machine[29]](/Images/icon/loading.gif)
Fig. 30. Schematic diagram of basic structure of molding machine[29]
![Ultrasonic vibration assisted glass molding machine[168]](/Images/icon/loading.gif)
Fig. 31. Ultrasonic vibration assisted glass molding machine[168]
![Ultrasonic vibration assisted glass molding machine with pre-adjusted horn[169]](/Images/icon/loading.gif)
Fig. 32. Ultrasonic vibration assisted glass molding machine with pre-adjusted horn[169]
![Molded total internal reflection lens[173]](/Images/icon/loading.gif)
Fig. 33. Molded total internal reflection lens[173]
![Molded chalcogenide freeform lenses[17]](/Images/icon/loading.gif)
Fig. 34. Molded chalcogenide freeform lenses[17]
![Molded glass diffractive structure[181]. (a) Contraction between mold and glass; (b) glass surface quality; (c) profile deviation](/Images/icon/loading.gif)
Fig. 35. Molded glass diffractive structure[181]. (a) Contraction between mold and glass; (b) glass surface quality; (c) profile deviation
![Wafer level glass lens molding[184]](/Images/icon/loading.gif)
Fig. 36. Wafer level glass lens molding[184]
|
Table 1. Comparison of mold material properties
|
Table 2. Comparison of typical film materials
|
Table 3. Comparison of Marc and Abaqus[151]
|
Table 4. Comparison of commercial glass molding machine

Set citation alerts for the article
Please enter your email address