• Chinese Optics Letters
  • Vol. 21, Issue 2, 022601 (2023)
Lingjie Fan1、2, Maoxiong Zhao1、2, Jiao Chu1, Tangyao Shen1、2, Minjia Zheng1, Fang Guan3, Haiwei Yin2, Lei Shi1、2、3、4、*, and Jian Zi1、2、3、4、**
Author Affiliations
  • 1Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
  • 2Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China
  • 3Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200438, China
  • 4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.3788/COL202321.022601 Cite this Article Set citation alerts
    Lingjie Fan, Maoxiong Zhao, Jiao Chu, Tangyao Shen, Minjia Zheng, Fang Guan, Haiwei Yin, Lei Shi, Jian Zi. Full description of dipole orientation in organic light-emitting diodes[J]. Chinese Optics Letters, 2023, 21(2): 022601 Copy Citation Text show less
    References

    [1] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes. Appl. Phys. Lett., 51, 913(1987).

    [2] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun., 5, 4016(2014).

    [3] Y.-H. Kim, H.-C. Jeong, S.-H. Kim, K. Yang, S.-K. Kwon. High-purity-blue and high-efficiency electroluminescent devices based on anthracene. Adv. Funct. Mater., 15, 1799(2005).

    [4] D. H. Kim, A. D’Aléo, X. K. Chen, A. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photonics, 12, 98(2018).

    [5] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395, 151(1998).

    [6] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett., 75, 4(1999).

    [7] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science, 332, 944(2011).

    [8] K. H. Kim, J. J. Kim. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater., 30, 1705600(2018).

    [9] R. Costa, G. Fernández, L. Sánchez, N. Martín, E. Ortí, H. Bolink. Dumbbell-shaped dinuclear iridium complexes and their application to light-emitting electrochemical cells. Chem. Eur. J., 16, 9855(2010).

    [10] P. Ren, S. Wei, P. Zhang, X. Chen. Probing fluorescence quantum efficiency of single molecules in an organic matrix by monitoring lifetime change during sublimation. Chin. Opt. Lett., 20, 073602(2022).

    [11] C. L. Lin, T. Y. Cho, C. H. Chang, C. C. Wu. Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Appl. Phys. Lett., 88, 081114(2006).

    [12] M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, K. Meerholz. In situ measurement of the internal luminescence quantum efficiency in organic light-emitting diodes. Appl. Phys. Lett., 95, 263306(2009).

    [13] S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting. Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J. Appl. Phys., 104, 123109(2008).

    [14] G. Chen, J. Zhu, X. Li. Influence of a dielectric decoupling layer on the local electric field and molecular spectroscopy in plasmonic nanocavities: a numerical study. Chin. Opt. Lett., 19, 123001(2021).

    [15] J. Frischeisen, D. Yokoyama, C. Adachi, W. Brütting. Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl. Phys. Lett., 96, 073302(2010).

    [16] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, C. Mayr. Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys. Status Solidi A, 210, 44(2013).

    [17] M. Flämmich, S. Roth, N. Danz, D. Michaelis, A. H. Bräuer, M. C. Gather, K. Meerholz. Measuring the dipole orientation in OLEDs. Proc. SPIE, 7722, 77220D(2010).

    [18] T. Lampe, T. D. Schmidt, M. J. Jurow, P. I. Djurovich, M. E. Thompson, W. Brütting. Dependence of phosphorescent emitter orientation on deposition technique in doped organic films. Chem. Mater., 28, 712(2016).

    [19] T. Komino, Y. Oki, C. Adachi. Dipole orientation analysis without optical simulation: application to thermally activated delayed fluorescence emitters doped in host matrix. Sci. Rep., 7, 8405(2017).

    [20] H. Cho, C. W. Joo, B.-H. Kwon, N. S. Cho, J. Lee. Non-linear relation between emissive dipole orientation and forward luminous efficiency of top-emitting organic light-emitting diodes. Org. Electron., 62, 72(2018).

    [21] Y. Hasegawa, Y. Yamada, M. Sasaki, T. Hosokai, H. Nakanotani, C. Adachi. Well-ordered 4CzIPN ((4s,6s)-2,4,5,6-tetra(9-H-carbazol-9-yl)isophthalonitrile) layers: molecular orientation, electronic structure, and angular distribution of photoluminescence. J. Phys. Chem. Lett., 9, 863(2018).

    [22] R. Chance, A. Prock, R. Silbey. Lifetime of an emitting molecule near a partially reflecting surface. J. Chem. Phys., 60, 2744(1974).

    [23] W. Lukosz, R. Kunz. Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power. J. Opt. Soc. Am. A, 67, 1607(1977).

    [24] R. R. Chance, A. Prock, R. Silbey. Molecular Fluorescence and Energy Transfer Near Interfaces(1978).

    [25] W. Lukosz. Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers. Phys. Rev. B, 22, 3030(1980).

    [26] W. Lukosz. Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles. J. Opt. Soc. Am. A, 71, 744(1981).

    [27] G. Ford, W. Weber. Electromagnetic interactions with metal surfaces. Phys. Rep., 113, 195(1984).

    [28] K. Neyts. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A, 15, 962(1998).

    [29] W. Barnes. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt., 45, 661(1998).

    [30] T. D. Schmidt, T. Lampe, M. R. D. Sylvinson, P. I. Djurovich, M. E. Thompson, W. Brütting. Emitter orientation as a key parameter in organic light-emitting diodes. Phys. Rev. Appl., 8, 037001(2017).

    [31] D. Yokoyama. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem., 21, 19187(2011).

    [32] L. Jiang, X. Luo, Z. Luo, D. Zhou, B. Liu, J. Huang, J. Zhang, X. Zhang, P. Xu, G. Li. Interface and bulk controlled perovskite nanocrystal growth for high brightness light-emitting diodes. Chin. Opt. Lett., 19, 030001(2021).

    [33] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science, 303, 1644(2004).

    [34] T. Amaya, S. Seki, T. Moriuchi, K. Nakamoto, T. Nakata, H. Sakane, A. Saeki, S. Tagawa, T. Hirao. Anisotropic electron transport properties in sumanene crystal. J. Am. Chem. Soc., 131, 408(2009).

    [35] K. Baek, D. M. Lee, Y. J. Lee, H. Choi, J. H. Kim. Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore. Light Sci. Appl., 8, 120(2019).

    [36] C. C. Katsidis, D. I. Siapkas. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt., 41, 3978(2002).

    [37] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024(1996).

    [38] L. Zhao, T. Komino, M. Inoue, J.-H. Kim, J. C. Ribierre, C. Adachi. Horizontal molecular orientation in solution-processed organic light-emitting diodes. Appl. Phys. Lett., 106, 063301(2015).

    [39] T. Komino, H. Tanaka, C. Adachi. Selectively controlled orientational order in linear-shaped thermally activated delayed fluorescent dopants. Chem. Mater., 26, 3665(2014).

    [40] C. A. Wächter, N. Danz, D. Michaelis, M. Flämmich, S. Kudaev, A. H. Bräuer, M. C. Gather, K. Meerholz. Intrinsic OLED emitter properties and their effect on device performance. Proc. SPIE, 6910, 691006(2008).

    Lingjie Fan, Maoxiong Zhao, Jiao Chu, Tangyao Shen, Minjia Zheng, Fang Guan, Haiwei Yin, Lei Shi, Jian Zi. Full description of dipole orientation in organic light-emitting diodes[J]. Chinese Optics Letters, 2023, 21(2): 022601
    Download Citation