• High Power Laser Science and Engineering
  • Vol. 9, Issue 4, 04000e65 (2021)
Hao Sun1、2, Xiaofan Wang3、4、*, Chao Feng5、*, Lingjun Tu1、2, Weijie Fan1、2, and Bo Liu5、*
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3Institute of Advanced Science Facilities, Shenzhen518000, China
  • 4Southern University of Science and Technology, College of Science, Shenzhen518055, China
  • 5Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
  • show less
    DOI: 10.1017/hpl.2021.52 Cite this Article Set citation alerts
    Hao Sun, Xiaofan Wang, Chao Feng, Lingjun Tu, Weijie Fan, Bo Liu. Coherent optical vortex generation with multiple topological charges based on a seeded free electron laser[J]. High Power Laser Science and Engineering, 2021, 9(4): 04000e65 Copy Citation Text show less

    Abstract

    To generate optical vortex with multiple topological charges, a simple scheme based on the phase mask shaping technique is proposed and applied in a seeded free electron laser. With a tailored phase mask, an extreme-ultraviolet (EUV) vortex with multiple topological charges can be produced. To prove the feasibility of this method, an eight-step phase mask is designed to shape the seed laser. The simulation results demonstrate that 100-MW, fully coherent EUV vortex pulses with topological charge 2 can be generated based on the proposed technique. We have also demonstrated the possibility of generating higher topological charges by using a phase mask with more steps.
    $$\begin{align} \textrm{Phase}_{\mathrm{mask}}=\left[\kern-4pt\begin{array}{cccc}\frac{3\pi }{2}& \pi & \frac{\pi }{2}& 0\\ {}0& \frac{\pi }{2}& \pi & \frac{3\pi }{2}\end{array}\kern-4pt\right]. \end{align}$$((1))

    View in Article

    $$\begin{align} \textrm{Phase}_{\mathrm{rad}}=n\cdot \textrm{Phase}_{\mathrm{ebeam}}=n\cdot \left[\kern-4pt\begin{array}{cccc}\frac{3\pi }{2}& \pi & \frac{\pi }{2}& 0\\ {}0& \frac{\pi }{2}& \pi & \frac{3\pi }{2}\end{array}\kern-4pt\right]\operatorname{mod}2\pi,\end{align} $$((2))

    View in Article

    $$\textrm{Phase}_{\mathrm{rad}}=\begin{bmatrix}0 & 0 & 0 & 0\\0& 0& 0& 0\end{bmatrix}\left(n=4m\right),$$((3))

    View in Article

    $$\textrm{Phase}_{\mathrm{rad}}=\begin{bmatrix}\pi & 0& \pi & 0\\ {}\pi & 0& \pi & 0\end{bmatrix}\left(n=4m+2\right).$$((4))

    View in Article

    $$\begin{align}\textrm{Phase}_{\mathrm{rad}}=\left[\kern-4pt\begin{array}{cccc}\frac{3\pi }{2}& \pi & \frac{\pi }{2}& 0\\ {}0& \frac{\pi }{2}& \pi & \frac{3\pi }{2}\end{array}\kern-4pt\right]\left(m:\mathrm{even}\right),\end{align}$$((5))

    View in Article

    $$\begin{align}\textrm{Phase}_{\mathrm{rad}}=\left[\kern-4pt\begin{array}{cccc}\frac{\pi }{2}& \pi & \frac{3\pi }{2}& 0\\ {}0& \frac{3\pi }{2}& \pi & \frac{\pi }{2}\end{array}\kern-4pt\right]\left(m:\mathrm{odd}\right).\end{align}$$((6))

    View in Article

    $$\begin{align}{\tilde{E}}^{\prime}\left({x}_1,{y}_1\right)=\tilde{E}\left({x}_1,{y}_1\right)\exp \left[-\frac{ik}{2f}\left({x}_1^2+{y}_1^2\right)\right].\end{align}$$((7))

    View in Article

    $$\begin{align}E\left(x,y\right)&=\frac{\exp \left({i} kf\right)}{{i}\lambda f}\exp \left[\frac{ik}{2f}\left({x}^2+{y}^2\right)\right] \nonumber\\ & \quad \times \mathrm{\mathcal{F}}\left\{{\tilde{E}}^{\prime}\left({x}_1,{y}_1\right)\exp \left[\frac{ik}{2f}\left({x}_1^2+{y}_1^2\right)\right]\right\}.\end{align}$$((8))

    View in Article

    $$\begin{align}E\left(x,y\right)=\frac{\exp \left({i} kf\right)}{{i}\lambda f}\exp \left[\frac{ik}{2f}\left({x}^2+{y}^2\right)\right]\mathrm{\mathcal{F}}\left\{\tilde{E}\left({x}_1,{y}_1\right)\right\}.\end{align}$$((9))

    View in Article

    $$\begin{align}{B}_y={B}_0\sin \left({k}_{\mathrm{u}}z\right),\end{align}$$((10))

    View in Article

    $$\begin{align}{E}_x={E}_0\sin \left[{k}_{\mathrm{s}}\left({z}^{\prime }-{z}_0\right)+\phi \right]\sqrt{e^{-\frac{x^2}{2{\sigma}_x^2}-\frac{y^2}{2{\sigma}_y^2}\frac{{\left({z}^{\prime }-{z}_0\right)}^2}{2{\sigma}_z^2}\frac{}{}}},\end{align}$$((11))

    View in Article

    $$\begin{align}\phi =\left[\begin{array}{cccc}\frac{3\pi }{2}& \pi & \frac{\pi }{2}& 0\\ {}0& \frac{\pi }{2}& \pi & \frac{3\pi }{2}\end{array}\right],\end{align}$$((12))

    View in Article

    $$\begin{align}{\sigma}_x(z)=\sqrt{\sigma_{x\mathrm{w}}^2+\frac{k_{\mathrm{s}}^2{\left(z-{z}_{\mathrm{w}}\right)}^2}{4{\sigma}_{x\mathrm{w}}^2}},\end{align}$$((13))

    View in Article

    $$\begin{align}{\sigma}_y(z)=\sqrt{\sigma_{y\mathrm{w}}^2+\frac{k_{\mathrm{s}}^2{\left(z-{z}_{\mathrm{w}}\right)}^2}{4{\sigma}_{y\mathrm{w}}^2}},\end{align}$$((14))

    View in Article

    $$\begin{align} \gamma {m}\frac{\mathrm{d}\overrightarrow{v}}{\mathrm{d}t}=e\overrightarrow{E}-e\overrightarrow{v}\times \overrightarrow{B}.\end{align}$$((15))

    View in Article

    $$\begin{align}{m}{c}^2\frac{\mathrm{d}\gamma}{\mathrm{d} t}={eE}_x\frac{\mathrm{d} x}{\mathrm{d} t}.\end{align}$$((16))

    View in Article

    $$\begin{align}b\left(\overrightarrow{r}\right)=\left\langle \exp \left[i{\theta}_i\left(\overrightarrow{r}\right)\right]\right\rangle .\end{align}$$((17))

    View in Article

    $$\begin{align}{b}_l(k)=\bigg|\bigg\langle {e}^{-{ikz}^{\prime\prime}- il\phi}f\left({\mathbf{x}}_{\perp },z,p\right)\bigg\rangle \bigg|,\end{align}$$((18))

    View in Article

    $$\begin{align}p=\left(E-{E}_0\right)/{\sigma}_{\textrm{E}}.\end{align}$$((19))

    View in Article

    Hao Sun, Xiaofan Wang, Chao Feng, Lingjun Tu, Weijie Fan, Bo Liu. Coherent optical vortex generation with multiple topological charges based on a seeded free electron laser[J]. High Power Laser Science and Engineering, 2021, 9(4): 04000e65
    Download Citation