• Photonics Research
  • Vol. 9, Issue 8, 1513 (2021)
Wanvisa Talataisong1、2、*, Jon Gorecki1、3, Lieke D. van Putten1, Rand Ismaeel1、4, James Williamson5, Katie Addinall5, Daniel Schwendemann6, Martynas Beresna1, Vasilis Apostolopoulos3, and Gilberto Brambilla1
Author Affiliations
  • 1Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
  • 2School of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
  • 3School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
  • 4National Oceanography Centre, Southampton, SO14 3ZH, UK
  • 5Centre for Precision Technologies, University of Huddersfield, Huddersfield, HD1 3DH, UK
  • 6Institute for Material Science and Plastics Processing, University of Applied Sciences Eastern Switzerland, Rapperswil, 8640, Switzerland
  • show less
    DOI: 10.1364/PRJ.420672 Cite this Article Set citation alerts
    Wanvisa Talataisong, Jon Gorecki, Lieke D. van Putten, Rand Ismaeel, James Williamson, Katie Addinall, Daniel Schwendemann, Martynas Beresna, Vasilis Apostolopoulos, Gilberto Brambilla. Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle[J]. Photonics Research, 2021, 9(8): 1513 Copy Citation Text show less
    References

    [1] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol., 20, S266-S280(2005).

    [2] G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, K. Sertel. A broadband focal plane array camera for real-time THz imaging applications. IEEE Trans. Antennas Propag., 61, 1733-1740(2013).

    [3] U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Förster, H. Rücker, B. Heinemann. 14.5 A 0.53 THz reconfigurable source array with up to 1 mW radiated power for terahertz imaging applications in 0.13  μm SiGe BiCMOS. IEEE International Solid-State Circuits Conference (ISSCC), 256-257(2014).

    [4] E. V. Yakovlev, K. I. Zaytsev, I. N. Dolganova, S. O. Yurchenko. Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy. IEEE Trans. Terahertz Sci. Technol., 5, 810-816(2015).

    [5] D. M. Mittleman. Twenty years of terahertz imaging [Invited]. Opt. Express, 26, 9417-9431(2018).

    [6] M. Zhang, J. T. W. Yeow. Nanotechnology-based terahertz biological sensing: a review of its current state and things to come. IEEE Nanatechnol. Mag., 10, 30-38(2016).

    [7] M. Borovkova, M. Khodzitsky, P. Demchenko, O. Cherkasova, A. Popov, I. Meglinski. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples. Biomed. Opt. Express, 9, 2266-2276(2018).

    [8] K. Wang, D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376-379(2004).

    [9] M. S. Islam, J. Sultana, K. Ahmed, M. R. Islam, A. Dinovitser, B. W. Ng, D. Abbott. A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J., 18, 575-582(2018).

    [10] D. F. Swearer, S. Gottheim, J. G. Simmons, D. J. Phillips, M. J. Kale, M. J. McClain, P. Christopher, N. J. Halas, H. O. Everitt. Monitoring chemical reactions with terahertz rotational spectroscopy. ACS Photon., 5, 3097-3106(2018).

    [11] P. Doradla, C. Joseph, R. H. Giles. Terahertz endoscopic imaging for colorectal cancer detection: current status and future perspectives. World J. Gastrointest. Endosc., 9, 346-358(2017).

    [12] I. F. Akyildiz, J. M. Jornet, C. Han. Terahertz band: next frontier for wireless communications. Phys. Commun., 12, 16-32(2014).

    [13] B. Moyna. Terahertz and millimetre-wave receivers and radiometers.

    [14] S. U. Hwu, K. B. deSilva, C. T. Jih. Terahertz (THz) wireless systems for space applications. IEEE Sensors Applications Symposium Proceedings, 171-175(2013).

    [15] S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, M. B. Johnston. The 2017 terahertz science and technology roadmap. J. Phys. D, 50, 043001(2017).

    [16] D. W. Vogt, R. Leonhardt. 3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure. J. Infrared Millim. Terahertz Waves, 37, 1086-1095(2016).

    [17] S. R. Andrews. Microstructured terahertz waveguides. J. Phys. D, 47, 374004(2014).

    [18] R. Khabibullin, D. Ushakov, A. Afonenko, N. Shchavruk, D. Ponomarev, O. Volkov, V. Pavlovskiy, I. Vasil’evskii, D. Safonov, A. Dubinov. Silver-based double metal waveguide for terahertz quantum cascade laser. Proc. SPIE, 11022, 1102204(2019).

    [19] B. You, J.-Y. Lu. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide. Opt. Express, 24, 18013-18023(2016).

    [20] G. C. Trichopoulos, K. Sertel. Polarimetric terahertz probe for endoscopic assessment of malignancies. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 730-731(2015).

    [21] B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, M. Skorobogatiy. Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express, 19, B848-B861(2011).

    [22] A. Argyros. Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt., 2013, 785162(2013).

    [23] R. Mendis, D. Grischkowsky. Plastic ribbon THz waveguides. J. Appl. Phys., 88, 4449-4451(2000).

    [24] H. Han, H. Park, M. Cho, J. Kim. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett., 80, 2634-2636(2002).

    [25] M. Goto, A. Quema, H. Takahashi, S. Ono, N. Sarukura. Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys., 43, L317-L319(2004).

    [26] K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, P. U. Jepsen. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express, 17, 8592-8601(2009).

    [27] Q. Chen, Y. Zhang, X. He, D. Kong, J. Zhang. Design and fabrication of cyclic-olefin copolymer based terahertz hollow-core photonic crystal fiber. 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2(2013).

    [28] Q. Chen, W. Zhu, D. Kong, X. He, B. Li, J. Miao, Z. Luo, X. Zhou, C. Yang, J. Zhang. Development of 2.5 THz suspended porous microstructured fiber based on cyclic-olefin copolymer. Optik, 145, 56-60(2017).

    [29] M. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M. R. Islam. Ultra low-loss hybrid core porous fiber for broadband applications. Appl. Opt., 56, 1232-1237(2017).

    [30] C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 424, 657-659(2003).

    [31] M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, O. Mitrofanov. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band. Opt. Express, 21, 23748-23755(2013).

    [32] L. D. van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, F. Poletti. 3D-printed polymer antiresonant waveguides for short-reach terahertz applications. Appl. Opt., 57, 3953-3958(2018).

    [33] S. Yan, S. Lou, X. Wang, T. Zhao, W. Zhang. High-birefringence hollow-core anti-resonant THz fiber. Opt. Quantum Electron., 50, 162(2018).

    [34] S. Atakaramians, S. A. Vahid, T. M. Monro, D. Abbott. Terahertz dielectric waveguides. Adv. Opt. Photon., 5, 169-215(2013).

    [35] A. Stefani, S. C. Fleming, B. T. Kuhlmey. Terahertz orbital angular momentum modes with flexible twisted hollow core antiresonant fiber. APL Photon., 3, 051708(2018).

    [36] A. L. S. Cruz, C. M. B. Cordeiro, M. A. R. Franco. 3D printed hollow-core terahertz fibers. Fibers, 6, 43(2018).

    [37] S. Atakaramians, S. A. Vahid, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, T. M. Monro. THz porous fibers: design, fabrication and experimental characterization. Opt. Express, 17, 14053-14062(2009).

    [38] X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, D. J. Richardson. Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. Electron. Lett., 41, 835-837(2005).

    [39] H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, M. C. J. Large. Extruded high-NA microstructured polymer optical fibre. Opt. Commun., 273, 133-137(2007).

    [40] H. Ebendorff-Heidepriem, T. M. Monro. Extrusion of complex preforms for microstructured optical fibers. Opt. Express, 15, 15086-15092(2007).

    [41] S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. A. Vahid, J. Canning, D. Abbott, T. M. Monro. Cleaving of extremely porous polymer fibers. IEEE Photon. J., 1, 286-292(2009).

    [42] S. J. Young, P. J. Yong, L. Chenyang, H. Jiasong, K. S. Chul. Chemical structure and physical properties of cyclic olefin copolymers (IUPAC Technical Report). Pure Appl. Chem., 77, 801-814(2005).

    [43] G. Khanarian. Optical properties of cyclic olefin copolymers. Opt. Eng., 40, 1024-1029(2001).

    [44] Engineering ToolBox. Young’s modulus–tensile and yield strength for common materials(2003).

    [45] S. F. Busch, M. Weidenbach, J. C. Balzer, M. Koch. THz optics 3D printed with TOPAS. J. Infrared Millim. Terahertz Waves, 37, 303-307(2016).

    [46] J. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, M. A. van Eijkelenborg. Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt. Lett., 33, 902-904(2008).

    [47] W. Talataisong, J. Gorecki, R. Ismaeel, M. Beresna, D. Schwendemann, V. Apostolopoulos, G. Brambilla. Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer. Sci. Rep., 10, 11045(2020).

    [48] W. Talataisong, R. Ismaeel, S. R. Sandoghchi, T. Rutirawut, G. Topley, M. Beresna, G. Brambilla. Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer. Opt. Express, 26, 32007-32013(2018).

    [49] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, T. M. Monro. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express, 11, 3568-3573(2003).

    [50] H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, T. M. Monro. Bismuth glass holey fibers with high nonlinearity. Opt. Express, 12, 5082-5087(2004).

    [51] J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, D. J. Richardson. High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation. J. Lightwave Technol., 24, 183-190(2006).

    [52] H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, T. M. Monro. 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Express, 4, 1494-1504(2014).

    [53] W. Lu, A. Argyros. Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J. Lightwave Technol., 32, 4621-4627(2014).

    [54] J. R. Hayes, F. Poletti, D. J. Richardson. Optimising the performances of hollow antiresonant fibres. 37th European Conference and Exposition on Optical Communications, Mo.2.LeCervin.2(2011).

    Wanvisa Talataisong, Jon Gorecki, Lieke D. van Putten, Rand Ismaeel, James Williamson, Katie Addinall, Daniel Schwendemann, Martynas Beresna, Vasilis Apostolopoulos, Gilberto Brambilla. Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle[J]. Photonics Research, 2021, 9(8): 1513
    Download Citation