• Journal of Semiconductors
  • Vol. 43, Issue 1, 011001 (2022)
References

[1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

[2] K I Bolotin, K J Sikes, Z Jiang et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351(2008).

[3] A A Balandin, S Ghosh, W Z Bao et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902(2008).

[4] C Lee, X Wei, J W Kysar et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385(2008).

[5] J Kang, J B Li, F M Wu et al. Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C, 115, 20466(2011).

[6] D Malko, C Neiss, F Viñes et al. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys Rev Lett, 108, 086804(2012).

[7] Y C Lin, H P Komsa, C H Yeh et al. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 9, 11249(2015).

[8] B Radisavljevic, A Radenovic, J Brivio et al. Single-layer MoS2 transistors. Nat Nanotechnol, 6, 147(2011).

[9] S Larentis, B Fallahazad, E Tutuc. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 101, 223104(2012).

[10] N R Pradhan, D Rhodes, S M Feng et al. Field-effect transistors based on few-layered α-MoTe2. ACS Nano, 8, 5911(2014).

[11] W Wu, D De, S C Chang et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl Phys Lett, 102, 142106(2013).

[12] W S Hwang, M Remskar, R S Yan et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl Phys Lett, 101, 013107(2012).

[13] M Naguib, V N Mochalin, M W Barsoum et al. 25th anniversary article: MXenes new family of two-dimensional materials. Adv Mater, 26, 992(2014).

[14] D Golberg, Y Bando, Y Huang et al. Boron nitride nanotubes and nanosheets. ACS Nano, 4, 2979(2010).

[15] L Song, L Ci, H Lu et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 10, 3209(2010).

[16] L K Li, Y J Yu, G Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

[17] S P Koenig, R A Doganov, H Schmidt et al. Electric field effect in ultrathin black phosphorus. Appl Phys Lett, 104, 103106(2014).

[18] Y B Chen, C Y Chen, R Kealhofer et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv Mater, 30, 1800754(2018).

[19] M Z Zhong, Q L Xia, L F Pan et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv Funct Mater, 28, 1802581(2018).

[20] B W H Baugher, H O H Churchill, Y F Yang et al. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat Nanotechnol, 9, 262(2014).

[21] F Bonaccorso, Z Sun, T Hasan et al. Graphene photonics and optoelectronics. Nat Photonics, 4, 611(2010).

[22] Q Wang, K Kalantar-Zadeh, A Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 7, 699(2012).

[23] R Liu, F K Wang, L X Liu et al. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct, 2, 2000136(2021).

[24] S Sinha, J H Warner. Recent progress in using graphene as an ultrathin transparent support for transmission electron microscopy. Small Struct, 2, 2000049(2021).

[25] S C Xu, J Zhang. Vertically aligned graphene for thermal interface materials. Small Struct, 1, 2000034(2020).

[26] A H Castro Neto, F Guinea, N M R Peres et al. The electronic properties of graphene. Rev Mod Phys, 81, 109(2009).

[27] K S Novoselov, A K Geim, S V Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

[28] K F Mak, L Ju, F Wang et al. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun, 152, 1341(2012).

[29] D R Dreyer, S Park, C W Bielawski et al. The chemistry of graphene oxide. Chem Soc Rev, 39, 228(2010).

[30] D C Marcano, D V Kosynkin, J M Berlin et al. Improved synthesis of graphene oxide. ACS Nano, 4, 4806(2010).

[31] G H Lee, Y J Yu, X Cui et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 7, 7931(2013).

[32] H W Guo, Z Hu, Z B Liu et al. Stacking of 2D materials. Adv Funct Mater, 31, 2007810(2021).

[33] L Cai, G Yu. Fabrication strategies of twisted bilayer graphenes and their unique properties. Adv Mater, 33, 2004974(2021).

[34] Y P Liu, C Zeng, J Yu et al. Moiré superlattices and related Moiré excitons in twisted van der Waals heterostructures. Chem Soc Rev, 50, 6401(2021).

[35] K Q Lin, P E Faria Junior, J M Bauer et al. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat Commun, 12, 1553(2021).

[36] K Kim, S Coh, L Z Tan et al. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys Rev Lett, 108, 246103(2012).

[37] J M Lopes Dos Santos, N M Peres, A H Castro Neto. Graphene bilayer with a twist: Electronic structure. Phys Rev Lett, 99, 256802(2007).

[38] Morell E Suárez, J D Correa, P Vargas et al. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys Rev B, 82, 121407(2010).

[39] S Lisi, X B Lu, T Benschop et al. Observation of flat bands in twisted bilayer graphene. Nat Phys, 17, 189(2021).

[40] R Bistritzer, A H MacDonald. Moire bands in twisted double-layer graphene. PNAS, 108, 12233(2011).

[41] A J H Jones, R Muzzio, P Majchrzak et al. Observation of electrically tunable van hove singularities in twisted bilayer graphene from NanoARPES. Adv Mater, 32, 2001656(2020).

[42] S Carr, D Massatt, S A Fang et al. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys Rev B, 95, 075420(2017).

[43] Y Cao, V Fatemi, A Demir et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

[44] Y Cao, V Fatemi, S A Fang et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

[45] T J Peltonen, R Ojajärvi, T T Heikkilä. Mean-field theory for superconductivity in twisted bilayer graphene. Phys Rev B, 98, 220504(2018).

[46] H Yoo, R Engelke, S Carr et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat Mater, 18, 448(2019).

[47] A Uri, S Grover, Y Cao et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature, 581, 47(2020).

[48] J M Park, Y Cao, K Watanabe et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590, 249(2021).

[49] Y Cao, D Rodan-Legrain, O Rubies-Bigorda et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 583, 215(2020).

[50] A Rozen, J M Park, U Zondiner et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature, 592, 214(2021).

[51] R M Fernandes, J W F Venderbos. Nematicity with a twist: Rotational symmetry breaking in a Moiré superlattice. Sci Adv, 6, eba8834(2020).

[52] J M Park, Y Cao, K Watanabe et al. Flavour Hund's coupling, Chern gaps and charge diffusivity in Moiré graphene. Nature, 592, 43(2021).

[53] Y Kim, P Moon, K Watanabe et al. Odd integer quantum Hall states with interlayer coherence in twisted bilayer graphene. Nano Lett, 21, 4249(2021).

[54] Vries F K de, E Portolés, G Zheng et al. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat Nanotechnol, 16, 760(2021).

[55] D Rodan-Legrain, Y Cao, J M Park et al. Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices. Nat Nanotechnol, 16, 769(2021).

[56] Z M Zhang, Y M Wang, K Watanabe et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat Phys, 16, 1093(2020).

[57] M H Naik, M Jain. Ultraflatbands and shear solitons in Moiré patterns of twisted bilayer transition metal dichalcogenides. Phys Rev Lett, 121, 266401(2018).

[58] L Wang, E M Shih, A Ghiotto et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater, 19, 861(2020).

[59] S N Miao, T M Wang, X Huang et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 Moiré superlattice. Nat Commun, 12, 3608(2021).

[60] E C Regan, D Q Wang, C H Jin et al. Mott and generalized Wigner crystal states in WSe2/WS2 Moiré superlattices. Nature, 579, 359(2020).

[61] F C Wu, T Lovorn, E Tutuc et al. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys Rev Lett, 122, 086402(2019).

[62] L H An, X B Cai, D Pei et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz, 5, 1309(2020).

[63] S X Wang, X H Cui, C E Jian et al. Stacking-engineered heterostructures in transition metal dichalcogenides. Adv Mater, 33, 2005735(2021).

[64] L D Xian, D M Kennes, N Tancogne-Dejean et al. Multiflat bands and strong correlations in twisted bilayer boron nitride: Doping-induced correlated insulator and superconductor. Nano Lett, 19, 4934(2019).

[65] B J Tang, B Y Che, M Z Xu et al. Recent advances in synthesis and study of 2D twisted transition metal dichalcogenide bilayers. Small Struct, 2, 2170012(2021).

[66] J B Yin, H Wang, H Peng et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat Commun, 7, 10699(2016).

[67] Z J Tan, J B Yin, C Chen et al. Building large-domain twisted bilayer graphene with van hove singularity. ACS Nano, 10, 6725(2016).

[68] B C Deng, C Ma, Q Y Wang et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat Photonics, 14, 549(2020).

[69] M R Rosenberger, H J Chuang, M Phillips et al. Twist angle-dependent atomic reconstruction and Moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 14, 4550(2020).

[70] J Kunstmann, F Mooshammer, P Nagler et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat Phys, 14, 801(2018).

[71] H Fang, C Battaglia, C Carraro et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. PNAS, 111, 6198(2014).

[72] K Liu, L Zhang, T Cao et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat Commun, 5, 4966(2014).

[73] W Xin, X K Li, X L He et al. Black-phosphorus-based orientation-induced diodes. Adv Mater, 30, 1704653(2018).

[74] W Xin, H B Jiang, X K Li et al. Photoinduced orientation-dependent interlayer carrier transportation in cross-stacked black phosphorus van der Waals junctions. Adv Mater Interfaces, 5, 1800964(2018).

[75] K Yasuda, X R Wang, K Watanabe et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 372, 1458(2021).

[76] S Ha, k N H Park, m H Kim et al. Enhanced third-harmonic generation by manipulating the twist angle of bilayergraphene. Light, 10, 19(2021).

[77] M Liao, i Z Wei, u L Du et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. NatCommun, 11, 2153(2020).

[78] W Xin, X D Chen, Z B Liu et al. Photovoltage enhancement in twisted-bilayer graphene using surface plasmon resonance. Adv Opt Mater, 4, 1703(2016).

[79] M Otteneder, S Hubmann, X B Lu et al. Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett, 20, 7152(2020).

[80] F Y Yang, W S Song, F H Meng et al. Tunable second harmonic generation in twisted bilayer graphene. Matter, 3, 1361(2020).

[81] Y Xiao, J L Liu, L Fu. Moiré is more: Access to new properties of two-dimensional layered materials. Matter, 3, 1142(2020).

[82] Y Cheng, C Huang, H Hong et al. Emerging properties of two-dimensional twisted bilayer materials. Chin Phys B, 28, 107304(2019).

[83] A Kerelsky, L J McGilly, D M Kennes et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 572, 95(2019).

[84] J Yu, R Giridharagopal, Y Li et al. Imaging graphene Moiré superlattices via scanning Kelvin probe microscopy. Nano Lett, 21, 3280(2021).

[85] M H Naik, S Kundu, I Maity et al. Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Phys Rev B, 102, 075413(2020).

[86] F Symalla, S Shallcross, I Beljakov et al. Band-gap engineering with a twist: Formation of intercalant superlattices in twisted graphene bilayers. Phys Rev B, 91, 205412(2015).

[87] F He, Y Zhou, Z Ye et al. Moiré patterns in 2D materials: A review. ACS Nano, 15, 5944(2021).

[88] Z D Li, X B Lu, D F Cordovilla Leon et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 15, 1539(2021).

[89] W Yan, L Meng, Z S Meng et al. Probing angle-dependent interlayer coupling in twisted bilayer WS2. J Phys Chem C, 123, 30684(2019).

[90] H Li, Q Zhang, C C R Yap et al. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Mater, 22, 1385(2012).

[91] K L Seyler, P Rivera, H Y Yu et al. Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 567, 66(2019).

[92] S Shabani, D Halbertal, W J Wu et al. Deep Moiré potentials in twisted transition metal dichalcogenide bilayers. Nat Phys, 17, 720(2021).

[93] T I Andersen, G Scuri, A Sushko et al. Excitons in a reconstructed Moiré potential in twisted WSe2/WSe2 homobilayers. Nat Mater, 20, 480(2021).

[94] S L Zhao, E Q Wang, E A Üzer et al. Anisotropic Moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures. Nat Commun, 12, 3947(2021).

[95] J M Bao, S R Xing, Y N Wang et al. Fabrication of large-area twisted bilayer graphene for high-speed ultra-sensitive tunable photodetectors. Micro- and Nanotechnology Sensors, Systems, and Applications V, 8725, 872503(2013).

[96] A Tiutiunnyk, C A Duque, F J Caro-Lopera et al. Opto-electronic properties of twisted bilayer graphene quantum dots. Phys E, 112, 36(2019).

[97] Y Z Liu, T Holder, B H Yan. Chirality-induced giant unidirectional magnetoresistance in twisted bilayer graphene. Innov, 2, 100085(2021).

[98] W Choi, I Akhtar, M A Rehman et al. Twist-angle-dependent optoelectronics in a few-layer transition-metal dichalcogenide heterostructure. ACS Appl Mater Interfaces, 11, 2470(2019).

[99] L Zhang, F C Wu, S C Hou et al. Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 591, 61(2021).

[100] T Cao, Z L Li, D Y Qiu et al. Gate switchable transport and optical anisotropy in 90° twisted bilayer black phosphorus. Nano Lett, 16, 5542(2016).

[101] V Shukla, A Grigoriev, R Ahuja. Rectifying behavior in twisted bilayer black phosphorus nanojunctions mediated through intrinsic anisotropy. Nanoscale Adv, 2, 1493(2020).

[102] W Y Yu, S F Li, L Lin et al. Rotated angular modulated electronic and optical properties of bilayer phosphorene: A first-principles study. Appl Phys Lett, 117, 163102(2020).

[103] T Fang, T R Liu, Z N Jiang et al. Fabrication and the interlayer coupling effect of twisted stacked black phosphorus for optical applications. ACS Appl Nano Mater, 2, 3138(2019).

[104] N S Liu, J F Zhang, S Zhou et al. Tuning the electronic properties of bilayer black phosphorene with the twist angle. J Mater Chem C, 8, 6264(2020).

[105] K Y Yao, N R Finney, J Zhang et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci Adv, 7, eabe8691(2021).

[106] M Vizner Stern, Y Waschitz, W Cao et al. Interfacial ferroelectricity by van der Waals sliding. Science, 372, 1462(2021).