• Infrared and Laser Engineering
  • Vol. 45, Issue 1, 102002 (2016)
Zhang Zhongping1、2、*, Zhang Haifeng1、2, Deng Huarong1, Cheng Zhien1, Li Pu1, Cao Jianjun1, and Shen Lurun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201645.0102002 Cite this Article
    Zhang Zhongping, Zhang Haifeng, Deng Huarong, Cheng Zhien, Li Pu, Cao Jianjun, Shen Lurun. Experiment of laser ranging to space debris by using two receiving telescopes[J]. Infrared and Laser Engineering, 2016, 45(1): 102002 Copy Citation Text show less

    Abstract

    For laser measurement to space debris adopting large aperture telescope will help to increase the ability of detecting laser echoes. According to laser link equation adopting multi-relative-small aperture telescopes could achieve the ability of receiving the laser echoes from one large aperture telescopes and the disadvantages for the large telescope, such as fast tracking ability, system running maintance and so on could be offest and with the measuring ability and efficiency. Based on the 1.56 m aperture of astronomical telescope about 55 m far from the 60 cm telescope at Shanghai Astronomical Observatory Chinese Academy of Sciences, the method of laser measurement with two receiving telescopes have been investigated and the observing experiments of space debris for the first time in China are also performed to validate the feasibility of synchronously receiving laser echoes by multi-receiving telescopes. It is indicated from the measuring results that the receiving ability for 1.56 m telescope is approximate three or four times higher than that of 60 cm telescope and the equivalent receiving aperture of 1.65 m telescope can be derived, which will play an important role in high precision laser ranging to far-distance and small-size space debris in future.
    Zhang Zhongping, Zhang Haifeng, Deng Huarong, Cheng Zhien, Li Pu, Cao Jianjun, Shen Lurun. Experiment of laser ranging to space debris by using two receiving telescopes[J]. Infrared and Laser Engineering, 2016, 45(1): 102002
    Download Citation