• Advanced Photonics
  • Vol. 2, Issue 5, 054002 (2020)
Mark I. Stockman*
Author Affiliations
  • Georgia State University, Center for Nano-Optics (CeNO), Department of Physics and Astronomy, Atlanta, Georgia, United States
  • show less
    DOI: 10.1117/1.AP.2.5.054002 Cite this Article Set citation alerts
    Mark I. Stockman. Brief history of spaser from conception to the future[J]. Advanced Photonics, 2020, 2(5): 054002 Copy Citation Text show less
    References

    Notes: This list of references is not intended to be exhaustive. In fact, it only contains certain selected publications chosen as an illustration of some milestones in spaser science and technology development. A full list is next to impossible to give here because it would contain thousands of publications.

    [1] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402(2003).

    [2] M. I. Stockman, D. J. Bergman. Surface plasmon amplification through stimulated emission of radiation (SPASER). Proc. SPIE, 5218, 93-102(2003).

    [3] K. Li et al. Surface plasmon amplification by stimulated emission in nanolenses. Phys. Rev. B, 71, 115409(2005).

    [4] M. I. Stockman. Spasers explained. Nat. Photonics, 2, 327-329(2008).

    [5] N. I. Zheludev et al. Lasing spaser. Nat. Photonics, 2, 351-354(2008).

    [6] M. T. Hill et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express, 17, 11107-11112(2009).

    [7] M. A. Noginov et al. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [8] R. F. Oulton et al. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [9] M. I. Stockman, D. J. Bergman. Surface plasmon amplification by stimulated emission of radiation (SPASER)(2009).

    [10] M. I. Stockman. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt., 12, 024004(2010).

    [11] M. I. Stockman. Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett., 106, 156802(2010).

    [12] Y.-H. Chen et al. Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces. Appl. Phys. Lett., 98, 261912(2011).

    [13] R. A. Flynn et al. A room-temperature semiconductor spaser operating near 1.5 micron. Opt. Express, 19, 8954-8961(2011).

    [14] R.-M. Ma et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater., 10, 110-113(2011).

    [15] P. Berini, I. De Leon. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics, 6, 16-24(2012).

    [16] Y.-Y. Chen et al. Progress in surface plasmon polariton nano-laser technologies and applications. Chin. Opt., 5, 453-463(2012).

    [17] K. Ding et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B, 85, 041301(2012).

    [18] Y.-J. Lu et al. Plasmonic nanolaser using epitaxially grown silver film. Science, 337, 450-453(2012).

    [19] R. Ma et al. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett., 12, 5396-5402(2012).

    [20] R. M. Ma et al. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev., 7, 1-21(2012).

    [21] H. Noh et al. Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett., 108, 186805(2012).

    [22] P. Ginzburg, A. V. Zayats. Linewidth enhancement in spasers and plasmonic nanolasers. Opt. Express, 21, 2147-2153(2013).

    [23] Y.-W. Huang et al. Toroidal lasing spaser. Sci. Rep., 3, 1237(2013).

    [24] D. Li, M. I. Stockman. Electric spaser in the extreme quantum limit. Phys. Rev. Lett., 110, 106803(2013).

    [25] X. Meng et al. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity. Sci. Rep., 3, 1241(2013).

    [26] X. G. Meng et al. Wavelength-tunable spasing in the visible. Nano Lett., 13, 4106-4112(2013).

    [27] F. van Beijnum et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett., 110, 206802(2013).

    [28] V. Apalkov, M. I. Stockman. Proposed graphene nanospaser. Light: Sci. Appl., 3, e191(2014).

    [29] Y.-J. Lu et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett., 14, 4381-4388(2014).

    [30] R.-M. Ma et al. Explosives detection in a lasing plasmon nanocavity. Nature Nanotechnol., 9, 600-604(2014).

    [31] X. Meng et al. Highly directional spaser array for the red wavelength region. Laser Photonics Rev., 8, 896-903(2014).

    [32] T. P. H. Sidiropoulos et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys., 10, 870-876(2014).

    [33] Q. Zhang et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun., 5, 4953(2014).

    [34] Y.-H. Chou et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett., 16, 3179-3186(2016).

    [35] S. Gwo, C.-K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Rep. Prog. Phys., 79, 086501(2016).

    [36] J. S. Totero Gongora et al. Spaser as a complex system: femtosecond dynamics traced by ab-initio simulations. Proc. SPIE, 9746, 974618(2016).

    [37] C. Alix-Panabieres, K. Pantel. Biological labels: here comes the spaser. Nat. Mater., 16, 790-791(2017).

    [38] H.-Z. Chen et al. Imaging the dark emission of spasers. Sci. Adv., 3, e1601962(2017).

    [39] C. Deeb, J.-L. Pelouard. Plasmon lasers: coherent nanoscopic light sources. Phys Chem. Chem. Phys., 19, 29731-29741(2017).

    [40] E. I. Galanzha et al. Spaser as a biological probe. Nat. Commun., 8, 15528(2017).

    [41] M. Premaratne, M. I. Stockman. Theory and technology of spasers. Adv. Opt. Photonics, 9, 79-128(2017).

    [42] S. Sun et al. Lead halide perovskite nanoribbon based uniform nanolaser array on plasmonic grating. ACS Photonics, 4, 649-656(2017).

    [43] S. Wang et al. High-yield plasmonic nanolasers with superior stability for sensing in aqueous solution. ACS Photonics, 4, 1355-1360(2017).

    [44] X. Y. Wang et al. Lasing enhanced surface plasmon resonance sensing. Nanophotonics, 6, 472-478(2017).

    [45] H. Z. Chen, S. Wang, R. M. Ma. Characterization of plasmonic nanolasers in spatial, momentum and frequency spaces. IEEE J. Quantum Electron, 54, 7200307(2018).

    [46] E. K. Keshmarzi, R. N. Tait, P. Berini. Single-mode surface plasmon distributed feedback lasers. Nanoscale, 10, 5914-5922(2018).

    [47] M. Stockman. Spasers to speed up CMOS processors(2018).

    [48] J. I. Tracey, D. M. O’Carroll. Short-wavelength lasing-spasing and random spasing with deeply subwavelength thin-film gain media. Adv. Funct. Mater., 28, 1802630(2018).

    [49] S. Wang, H.-Z. Chen, R.-M. Ma. High performance plasmonic nanolasers with external quantum efficiency exceeding 10%. Nano Lett., 18, 7942-7948(2018).

    [50] Z. Withers, D. V. Voronine. Quantum medicine with ultraviolet aluminum nanolasers. IEEE J. Sel. Top. Quant. Electron., 25, 7300506(2018).

    [51] Z. Wu et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv. Opt. Mater., 6, 1800674(2018). https://doi.org/10.1002/adom.201800674

    [52] S. I. Azzam et al. Exploring time-resolved multiphysics of active plasmonic systems with experiment-based gain models. Laser Photonics Rev., 13, 1800071(2019).

    [53] R. Guo et al. Lasing at K points of a honeycomb plasmonic lattice. Phys. Rev. Lett., 122, 013901(2019).

    [54] D. L. Gamacharige et al. Significance of the nonlocal optical response of metal nanoparticles in describing the operation of plasmonic lasers. Phys. Rev. B, 99, 115405(2019).

    [55] C.-Z. Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review. Adv. Photonics, 2, 014002(2019).

    [56] S. Pourjamal et al. Lasing in Ni nanodisk arrays. ACS Nano, 13, 5686-5692(2019).

    [57] S. I. Azzam et al. Ten years of spasers and plasmonic nanolasers. Light: Sci. Appl., 9, 90(2020).

    [58] Z. Gao et al. Spaser nanoparticles for ultranarrow bandwidth sted super-resolution imaging. Adv. Mater., 32, 1907233(2020).

    [59] R. Ghimire et al. Topological nanospaser. Nanophotonics, 9, 865-874(2020).

    [60] J.-S. Wu, V. Apalkov, M. I. Stockman. Topological spaser. Phys. Rev. Lett., 124, 017701(2020).

    [61] Z.-J. Zhan et al. Two-photon pumped spaser based on the Cds/Zns Core/shell quantum dot–mesoporous silica–metal structure. AIP Adv., 10, 045312(2020).

    [62] M. J. H. Marell et al. Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express, 19, 15109-15118(2011).

    [63] J. Ho et al. Low threshold near infrared gaas-algaas core-shell nanowire plasmon laser. ACS Photonics, 2, 165-171(2015).

    [64] W. Zhou et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnol., 8, 506-511(2013).

    [65] S.-H. Kim et al. Broadband surface plasmon lasing in one-dimensional metallic gratings on semiconductor. Sci. Rep., 7, 7907(2017).

    [66] C.-J. Lee et al. Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength. ACS Photonics, 4, 1431-1439(2017).

    [67] N. B. Nguyen et al. Hybrid gap plasmon GaAs nanolasers. Appl. Phys. Lett., 111, 261107(2017).

    [68] C. Y. Wu et al. Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. Nano Lett., 11, 4256-4260(2011).

    [69] Y. Hou et al. Room temperature plasmonic lasing in a continuous wave operation mode from an Ingan/Gan single nanorod with a low threshold. Sci. Rep., 4, 5014(2014).

    [70] S. J. P. Kress et al. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers. Sci. Adv., 3, e1700688(2017).

    [71] P. Melentiev et al. Plasmonic nanolaser for intracavity spectroscopy and sensorics. Appl. Phys. Lett., 111, 213104(2017).

    [72] T. Tao et al. Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods. Adv. Funct. Mater., 27, 1703198(2017).

    [73] Q. Zhang et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material. ACS Photonics, 4, 2789-2796(2017).

    [74] P. Song et al. Three-level spaser for next-generation luminescent nanoprobe. Sci. Adv., 4, eaat0292(2018).

    [75] Y.-C. Hsu et al. Room temperature ultraviolet gan metal-coated nanorod laser. Appl. Phys. Lett., 103, 191102(2013).

    [76] Y.-L. Ho et al. On-chip monolithically fabricated plasmonic-waveguide nanolaser. Nano Lett., 18, 7769-7776(2018).

    [77] Y.-J. Liao et al. Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al2O3 interlayers. RSC Adv., 9, 13600-13607(2019). https://doi.org/10.1039/C9RA01484E

    [78] L. Garwin, C. H. Townes, T. Lincoln. The First Laser. A Century of Nature: Twenty-One Discoveries that Changed Science and the World, 107-112(2003).

    [79] A. L. Schawlow, C. H. Townes. Infrared and optical masers. Phys. Rev., 112, 1940-1949(1958).

    [80] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [81] F. Krausz, M. I. Stockman. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics, 8, 205-213(2014).

    [82] F. Krausz. The birth of attosecond physics and its coming of age. Phys. Scripta, 91, 063011(2016).

    [83] R. P. Feynman. There’s plenty of room at the bottom. Caltech. Eng. Sci., 23, 22-36(1960).

    [84] L. Novotny, S. J. Stranick. Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem., 57, 303-331(2006).

    [85] T. W. Johnson et al. Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano, 6, 9168-9174(2012).

    [86] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [87] M. I. Stockman. Nanoplasmonic sensing and detection. Science, 348, 287-288(2015).

    [88] M. I. Stockman, S. V. Faleev, D. J. Bergman. Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?. Phys. Rev. Lett., 87, 167401(2001).

    [89] W. Pauli. The connection between spin and statistics. Phys. Rev., 58, 716-722(1940).

    [90] M. I. Stockman, D. J. Bergman. Method for surface plasmon amplification by stimulated emission of radiation (SPASER)(2011).

    [91] M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Opt. Express, 19, 22029-22106(2011).

    [92] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 37-38(1946).

    [93] H. M. Wiseman. Light amplification without stimulated emission: beyond the standard quantum limit to the laser linewidth. Phys. Rev. A, 60, 4083-4093(1999).

    [94] M. J. Stevens et al. High-order temporal coherences of chaotic and laser light. Opt. Express, 18, 1430-1437(2010).

    [95] R. H. Brown, R. Q. Twiss. A test of a new type of stellar interferometer on Sirius. Nature, 178, 1046-1048(1956).

    [96] J. Morrison, P. Mahoney, T. Hodgetts. Shaped charges and explosively formed penetrators: background for clinicians. J. R. Army Med. Corps, 153, 184-187(2007).

    [97] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [98] S. W. Hell. Microscopy and its focal switch. Nat. Methods, 6, 24-32(2009).

    [99] K. K. Steincke. Farvel og Tak: Minder og Meninger(1948).

    [100] F. R. Shapiro. The Yale Book of Quotations(2006).

    CLP Journals

    [1] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    [2] Zhe Zhang, Leona Nest, Suo Wang, Si-Yi Wang, Ren-Min Ma. Lasing-enhanced surface plasmon resonance spectroscopy and sensing[J]. Photonics Research, 2021, 9(9): 1699

    Mark I. Stockman. Brief history of spaser from conception to the future[J]. Advanced Photonics, 2020, 2(5): 054002
    Download Citation