• Journal of Semiconductors
  • Vol. 40, Issue 8, 081510 (2019)
Na Chen1, Kaixuan Fang1, Hongxia Zhang1, Yingqi Zhang1, Wenjian Liu1, Kefu Yao1, and Zhengjun Zhang2
Author Affiliations
  • 1Key Laboratory for Advanced Materials Processing Technology (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory for Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081510 Cite this Article
    Na Chen, Kaixuan Fang, Hongxia Zhang, Yingqi Zhang, Wenjian Liu, Kefu Yao, Zhengjun Zhang. Amorphous magnetic semiconductors with Curie temperatures above room temperature[J]. Journal of Semiconductors, 2019, 40(8): 081510 Copy Citation Text show less
    References

    [1] F Holtzberg, T R McGuire, S Methfessel et al. Effect of electron concentration on magnetic exchange interactions in rare earth chalcogenides. Phys Rev Lett, 13, 18(1964).

    [2] T Kasuya, A Yanase. Anomalous transport phenomena in Eu-chalcogenide alloys. Rev Mod Phys, 40, 684(1968).

    [3] S Methfessel. Potential applications of magnetic rare earth compounds. IEEE Trans Mag, 1, 144(1965).

    [4]

    [5] T Dietl, H Ohno. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys, 86, 187(2014).

    [6] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [7] H Ohno, A Shen, F Matsukura et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 69, 363(1996).

    [8] H Munekata, H Ohno, Molnár S von et al. Diluted magnetic III–V semiconductors. Phys Rev Lett, 63, 1849(1989).

    [9] L Chen, X Yang, F H Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [10] Y Matsumoto, M Murakami, T Shono et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 291, 854(2001).

    [11] F Pulizzi, S Chambers. Is it really intrinsic ferromagnetism. Nat Mater, 9, 956(2010).

    [12] L Chen, S Yan, P F Xu et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 95, 182505(2009).

    [13] F Pulizzi, N Samarth. A model ferromagnetic semiconductor. Nat Mater, 9, 955(2010).

    [14] H Ohno. A window on the future of spintronics. Nat Mater, 9, 952(2010).

    [15] X L Wang, H L Wang, D Pan et al. Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules. Adv Mater, 27, 8043(2015).

    [16] . More than just room temperature. Nat Mater, 9, 951(2010).

    [17] S H Nie, Y Y Chin, W Q Liu et al. Ferromagnetic interfacial interaction and the proximity effect in a Co2FeAl/(Ga,Mn)As bilayer. Phys Rev Lett, 111, 027203(2013).

    [18] T Dietl. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 9, 965(2010).

    [19] X Z Yu, H L Wang, D Pan et al. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering. Nano Lett, 13, 1572(2013).

    [20] J H Zhao. Is it possible to create magnetic semiconductors that work at room temperature. Chin Sci Bull, 61, 1401(2016).

    [21]

    [22] L M Hoistad, S Lee. The Hume-Rothery electron concentration rules and second moment scaling. J Am Chem Soc, 113, 8216(1991).

    [23]

    [24] N Chen, Y Q Zhang, K F Yao. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Phys Sin, 66, 176113(2017).

    [25] N Chen, H P Li, A Hirata et al. Transparent magnetic semiconductor with embedded metallic glass nano-granules. Mater Design, 132, 208(2017).

    [26] W J Liu, H X Zhang, J A Shi et al. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nat Commun, 7, 13497(2016).

    [27] A Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 48, 279(2000).

    [28] W L Johnson. Bulk glass-forming metallic alloys: science and technology. MRS Bull, 24, 42(1999).

    [29] A L Greer. Metallic glasses. Science, 267, 1947(1995).

    [30] W H Wang, C Dong, C H Shek. Bulk metallic glasses. Mater Sci Eng R, 44, 45(2004).

    [31] M W Chen. A brief overview of bulk metallic glasses. NPG Asia Mater, 3, 82(2011).

    [32] J M D Coey, M Venkatesan, C B Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 4, 173(2005).

    [33] A Inoue, B L Shen, H Koshiba et al. Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Mater, 52, 1631(2004).

    [34] A Inoue, B L Shen, H Koshiba et al. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat Mater, 2, 661(2003).

    [35] P Sharma, H Kimura, A Inoue. Observation of unusual magnetic behavior: spin reorientation transition in thick Co–Fe–Ta–B glassy films. J Appl Phys, 100, 083902(2006).

    [36] P Sharma, H Kimura, A Inoue et al. Temperature and thickness driven spin-reorientation transition in amorphous Co–Fe–Ta–B thin films. Phys Rev B, 73, 052401(2006).

    [37] M S Lucas, W C Bourne, A O Sheets et al. Nanocrystalline Hf and Ta containing FeCo based alloys for high frequency applications. Mater Sci Eng B, 176, 1079(2011).

    [38] J P Pellegren, V M Sokalski. Thickness and interface-dependent crystallization of CoFeB alloy thin films. IEEE Trans Magn, 51, 3400903(2015).

    [39] S D Bader, S S P Parkin. Spintronics. Ann Rev Condens Matter Phys, 1, 71(2010).

    [40] H Ohno, D Chiba, F Matsukura et al. Electric-field control of ferromagnetism. Nature, 408, 944(2000).

    [41] C Song, B Cui, F Li et al. Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog Mater Sci, 87, 33(2017).

    [42] I Žutić, J Fabian, Sarma S Das. Spintronics: fundamentals and applications. Rev Mod Phys, 76, 323(2004).

    [43] F Hellman, A Hoffmann, Y Tserkovnyak et al. Interface-induced phenomena in magnetism. Rev Mod Phys, 89, 025006(2017).

    [44] D D Awschalom, M E Flatté. Challenges for semiconductor spintronics. Nat Phys, 3, 153(2007).

    [45] M Weisheit, S Fähler, A Marty et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 315, 349(2007).

    [46] B Cui, C Song, H J Mao et al. Manipulation of electric field effect by orbital switch. Adv Funct Mater, 26, 753(2016).

    [47] B Cui, C Song, G Y Wang et al. Reversible ferromagnetic phase transition in electrode-gated manganites. Adv Funct Mater, 24, 7233(2014).

    [48] Y Yamada, K Ueno, T Fukumura et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science, 332, 1065(2011).

    [49] Y Q Zhang, S F Zhao, C Song et al. Electric-field control of ferromagnetism in a Co–Fe–Ta–B amorphous alloy. Mater Design, 143, 65(2018).

    [50] S Zhang, Y G Zhao, X Xiao et al. Giant electrical modulation of magnetization in Co40Fe40B20/ Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure. Sci Rep, 4, 3727(2014).

    [51] Y T Liu, G Agnus, S Ono et al. Ionic-liquid gating of perpendicularly magnetised CoFeB/MgO thin films. J Appl Phys, 120, 023901(2016).

    [52] M Nakano, K Shibuya, D Okuyama et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature, 487, 459(2012).

    [53] S Narushima, H Mizoguchi, K Shimizu et al. A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p–n heterojunction diodes. Adv Mater, 15, 1409(2003).

    Na Chen, Kaixuan Fang, Hongxia Zhang, Yingqi Zhang, Wenjian Liu, Kefu Yao, Zhengjun Zhang. Amorphous magnetic semiconductors with Curie temperatures above room temperature[J]. Journal of Semiconductors, 2019, 40(8): 081510
    Download Citation