• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 4, 2141001 (2021)
Yumin Zhang1, Li Lin1, Jing He1, and Jian Ye1、2、*
Author Affiliations
  • 1School of Biomedical Engineering Shanghai Jiao Tong University Shanghai, P. R. China
  • 2Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai, P. R. China
  • show less
    DOI: 10.1142/s1793545821410017 Cite this Article
    Yumin Zhang, Li Lin, Jing He, Jian Ye. Optical penetration of surface-enhanced micro-scale spatial offset Raman spectroscopy in turbid gel and biological tissue[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2141001 Copy Citation Text show less
    References

    [1] G. Hong, A. L. Antaris, H. Dai, "Near-infrared fluorophores for biomedical imaging," Nat. Biomed. Eng. 1, 0010 (2017).

    [2] Z. Bao, Y. Zhang, Z. Tan, X. Yin, W. Di, J. Ye, "Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging," Biomaterials 163, 105– 115 (2018).

    [3] S. Raimondo, G. Zito, "Imaging to study solid tumour origin and progression: Lessons from research and clinical oncology," Immunol. Cell Biol. 95, 531– 537 (2017).

    [4] K. Welsher, S. P. Sherlock, H. J. Dai, "Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window," Proc. Natl. Acad. Sci. USA 108, 8943–8948 (2011).

    [5] J. Liu, Q. Y. Lin, K. Blazek, B. H. Liang, X. M. Guan, "Transvaginal natural orifice transluminal endoscopic surgery myomectomy: A novel route for uterine myoma removal," J. Minim. Invasive Gynecol. 25, 959–960 (2018).

    [6] T. Itoi, T. H. Baron, M. A. Khashab, T. Tsuchiya, S. Irani, V. Dhir, A. Y. B. Teoh, "Technical review of endoscopic ultrasonography-guided gastroenterostomy in 2017," Dig. Endosc. 29, 495–502 (2017).

    [7] I. Skovgaard Christiansen, J. C. Kuijvenhoven, U. Bodtger, T. M. H. Naur, K. Ahmad, J. Singh Sidhu, R. Nessar, G. N. Salih, A. Hoegholm, J. T. Annema, P. F. Clementsen, "Endoscopic ultrasound with bronchoscope-guided fine needle aspiration for the diagnosis of paraesophageally located lung lesions," Respiration 97, 277–283 (2019).

    [8] W. Marlicz, K. Skonieczna-Zydecka, D. E. Yung, I. Loniewski, A. Koulaouzidis, "Endoscopic findings and colonic perforation in microscopic colitis: A systematic review," Dig. Liver Dis. 49, 1073–1085 (2017).

    [9] E. Cordero, I. Latka, C. Matthaus, I. W. Schie, J. Popp, "In-vivo Raman spectroscopy: From basics to applications," J. Biomed. Opt. 23, 071210 (2018).

    [10] Y. Zhou, C. H. Liu, Y. Pu, B. L. Wu, T. A. Nguyen, G. G. Cheng, L. X. Zhou, K. Zhu, J. Chen, Q. B. Li, R. R. Alfano, "Combined spatial frequency spectroscopy analysis with visible resonance Raman for optical biopsy of human brain metastases of lung cancers," J. Innov. Opt. Health Sci. 12, 1950010 (2019).

    [11] L. A. Lane, R. Y. Xue, S. M. Nie, "Emergence of two near-infrared windows for in vivo and intraoperative SERS," Curr. Opin. Chem. Biol. 45, 95–103 (2018).

    [12] P. Matousek, N. Stone, "Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring," Chem. Soc. Rev. 45, 1794– 1802 (2016).

    [13] P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, A. W. Parker, "Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy," Appl. Spectrosc. 59, 1485– 1492 (2005).

    [14] P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, A. W. Parker, "Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy," Appl. Spectrosc. 59, 393–400 (2005).

    [15] N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, P. Matousek, "Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging — the next dimension," Chem. Sci. 2, 776– 780 (2011).

    [16] C. Conti, M. Realini, C. Colombo, P. Matousek, "Comparison of key modalities of micro-scale spatially offset Raman spectroscopy," Analyst 140, 8127–8133 (2015).

    [17] C. Conti, C. Colombo, M. Realini, G. Zerbi, P. Matousek, "Subsurface Raman analysis of thin painted layers," Appl. Spectrosc. 68, 686–691 (2014).

    [18] C. Conti, C. Colombo, M. Realini, P. Matousek, "Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS)," J. Raman Spectrosc. 46, 476–482 (2015).

    [19] C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, P. Matousek, "Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy," Anal. Chem. 87, 5810–5815 (2015).

    [20] M. Realini, C. Conti, A. Botteon, C. Colombo, P. Matousek, "Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool," Analyst 142, 351–355 (2017).

    [21] P. Vandenabeele, C. Conti, A. Rousaki, L. Moens, M. Realini, P. Matousek, "Development of a fiberoptics microspatially offset Raman spectroscopy sensor for probing layered materials," Anal. Chem. 89, 9218–9223 (2017).

    [22] L. Lin, Q. Zhang, X. Y. Li, M. Qiu, X. Jiang, W. Jin, H. C. Gu, D. Y. Lei, J. Ye, "Electron transport across plasmonic molecular nanogaps interrogated with surface-enhanced Raman scattering," ACS Nano 12, 6492–6503 (2018).

    [23] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. R. Van Duyne, "Surface-enhanced Raman spectroscopy," Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    [24] J. M. Nam, J. W. Oh, H. Lee, Y. D. Suh, "Plasmonic nanogap-enhanced Raman scattering with nanoparticles," Acc. Chem. Res. 49, 2746–2755 (2016).

    [25] L. Lin, H. C. Gu, J. Ye, "Plasmonic multi-shell nanomatryoshka particles as highly tunable SERS tags with built-in reporters," Chem. Commun. 51, 17740–17743 (2015).

    [26] W. E. Doering, S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311–317 (2002).

    [27] S. M. Nie, S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102–1106 (1997).

    [28] N. G. Khlebtsov, L. Lin, B. N. Khlebtsov, J. Ye, "Gap-enhanced Raman tags: Fabrication, optical properties, and theranostic applications," Theranostics 10, 2067–2094 (2020).

    [29] D. Graham, K. Faulds, "Quantitative SERRS for DNA sequence analysis," Chem. Soc. Rev. 37, 1042– 1051 (2008).

    [30] A. Mallinger, K. Schiemann, C. Rink, F. Stieber, M. Calderini, S. Crumpler, M. Stubbs, O. Adeniji- Popoola, O. Poeschke, M. Busch, P. Czodrowski, D. Musil, D. Schwarz, M. J. Ortiz-Ruiz, R. Schneider, C. Thai, M. Valenti, A. de Haven Brandon, R. Burke, P. Workman, T. Dale, D. Wienke, P. A. Clarke, C. Esdar, F. I. Raynaud, S. A. Eccles, F. Rohdich, J. Blagg, "Discovery of potent, selective, and orally bioavailable small-molecule modulators of the mediator complex-associated kinases CDK8 and CDK19," J. Med. Chem. 59, 1078–1101 (2016).

    [31] H. K. Yuan, Y. Liu, A. M. Fales, Y. L. Li, J. Liu, T. Vo-Dinh, "Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection," Anal. Chem. 85, 208–212 (2013).

    [32] S. M. Asiala, N. C. Shand, K. Faulds, D. Graham, "Surface-enhanced, spatially offset Raman spectroscopy (SESORS) in tissue analogues," ACS Appl. Mater. Interfaces 9, 25488–25494 (2017).

    [33] B. Sharma, K. Ma, M. R. Glucksberg, R. P. Van Duyne, "Seeing through Bone with surface-enhanced spatially offset Raman spectroscopy," J. Am. Chem. Soc. 135, 17290–17293 (2013).

    [34] F. Nicolson, L. E. Jamieson, S. Mabbott, K. Plakas, N. C. Shand, M. R. Detty, D. Graham, K. Faulds, "Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS)," Chem. Sci. 9, 3788–3792 (2018).

    [35] H. N. Xie, R. Stevenson, N. Stone, A. Hernandez- Santana, K. Faulds, D. Graham, "Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy," Angew. Chem., Int. Ed. 51, 8509–8511 (2012).

    [36] J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, R. P. Van Duyne, "Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model," Anal. Chem. 82, 8382–8385 (2010).

    [37] A. S. Moody, P. C. Baghernejad, K. R. Webb, B. Sharma, "Surface enhanced spatially offset Raman spectroscopy detection of neurochemicals through the skull," Anal. Chem. 89, 5689–5693 (2017).

    [38] N. Zhao, Z. R. Yang, B. X. Li, J. Meng, Z. L. Shi, P. Li, S. Fu, "RGD-conjugated mesoporous silicaencapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy," Int. J. Nanomed. 11, 5595–5610 (2016).

    [39] X. Y. Bi, Y. Q. Gu, J. Ye, "Ag-coated Au nanopetals: Dual-type single-nanoparticle detection of gap-enhanced resonance Raman tags," ACS Appl. Nano Mater. 3, 6987–6995 (2020).

    [40] Y. Q. Gu, X. Y. Bi, J. Ye, "Gap-enhanced resonance Raman tags for live-cell imaging," J. Mater. Chem. B 8, 6944–6955 (2020).

    [41] P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370–4379 (1972).

    [42] Y. Q. Zhang, Y. Q. Gu, J. He, B. D. Thackray, J. Ye, "Ultrabright gap-enhanced Raman tags for high-speed bioimaging," Nat. Commun. 10, 3905 (2019).

    [43] T. Nagy-Simon, M. Potara, A. M. Craciun, E. Licarete, S. Astilean, "IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging," J. Colloid Interface Sci. 517, 239–250 (2018).

    [44] X. L. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, J. Ye, "Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy," ACS Appl. Mater. Interfaces 9, 30387–30397 (2017).

    [45] K. Kim, J. Y. Choi, K. S. Shin, "Surface-enhanced Raman scattering of 4-nitrobenzenethiol and 4-aminobenzenethiol on silver in icy environments at liquid nitrogen temperature," J. Phys. Chem. C 118, 11397–11403 (2014).

    [46] Y. X. Guo, Z. F. Zhuang, Z. M. Liu, W. D. Fan, H. Q. Zhong, W. Zhang, Y. R. Ni, Z. Y. Guo, "Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles," Appl. Surf. Sci. 480, 1162–1170 (2019).

    [47] M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, B. J. Tromberg, "Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media," J. Biomed. Opt. 14, 010508 (2009).

    [48] Y. R. Lee, S. Lee, D. G. Kim, "Enhancement of emulsion penetration in agarose gel model using flexible plasma treatment," Biomed. Phys. Eng. Express 5, 045027 (2019).

    [49] A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, X. S. Xie, "Adaptive optics for enhanced signal in CARS microscopy," Opt. Express 15, 18209–18219 (2007).

    [50] D. Dobrynin, G. Fridman, G. Friedman, A. A. Fridman, "Deep penetration into tissues of reactive oxygen species generated in floating electrode dielectric barrier discharge (FE-DBD): An in vitro agarose gel model mimicking an open wound," Plasma Med. 2, 71–83 (2012).

    [51] T. R. Kwon, J. Seok, J. H. Jang, M. K. Kwon, C. T. Oh, E. J. Choi, H. K. Hong, Y. S. Choi, J. Bae, B. J. Kim, "Needle-free jet injection of hyaluronic acid improves skin remodeling in a mouse model," Eur. J. Pharm. Biopharm. 105, 69–74 (2016).

    [52] H. Wang, T. B. Hu?, Y. Fu, K. Y. Jia, J.-X. Cheng, "Increasing the imaging depth of coherent anti- Stokes Raman scattering microscopy with a miniature microscope objective," Opt. Lett. 32, 2212–2214 (2007).

    [53] D. W. Zhang, D. B. Das, C. D. Rielly, "Microneedle assisted micro-particle delivery from gene guns: Experiments using skin-mimicking agarose gel," J. Pharm. Sci. 103, 613–627 (2014).

    Yumin Zhang, Li Lin, Jing He, Jian Ye. Optical penetration of surface-enhanced micro-scale spatial offset Raman spectroscopy in turbid gel and biological tissue[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2141001
    Download Citation