• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802008 (2021)
Kangmei Li, Xingzhe He, Yu Cai, and Jun Hu*
Author Affiliations
  • College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.3788/CJL202148.1802008 Cite this Article Set citation alerts
    Kangmei Li, Xingzhe He, Yu Cai, Jun Hu. Stress Field Simulation of Friction Stir Welding and Laser Peening Composite Process[J]. Chinese Journal of Lasers, 2021, 48(18): 1802008 Copy Citation Text show less
    References

    [1] Li J N, Su M L, Qi W J et al. Mechanical property and characterization of 7A04-T6 aluminum alloys bonded by friction stir welding[J]. Journal of Manufacturing Processes, 52, 263-269(2020).

    [2] Yang D, Qu W W, Ke Y L. Local-global method to predict distortion of aircraft panel caused in automated riveting process[J]. Assembly Automation, 39, 973-985(2019).

    [3] Srinivasan P B, Arora K S, Dietzel W et al. Characterisation of microstructure, mechanical properties and corrosion behaviour of an AA2219 friction stir weldment[J]. Journal of Alloys and Compounds, 492, 631-637(2010).

    [4] Kumar R, Singh R, Ahuja I P S et al. Weldability of thermoplastic materials for friction stir welding: a state of art review and future applications[J]. Composites Part B: Engineering, 137, 1-15(2018).

    [5] Sano Y, Masaki K, Gushi T et al. Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating[J]. Materials & Design, 36, 809-814(2012).

    [6] Shadangi Y, Chattopadhyay K, Rai S B et al. Effect of laser shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel[J]. Surface and Coatings Technology, 280, 216-224(2015).

    [7] Wang J, Li M, Wang J X et al. Effects of laser shock processing on fatigue life of 304 stainless steel[J]. Chinese Journal of Lasers, 46, 0102003(2019).

    [8] Yang Y, Zhou K, Li G J. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening[J]. Optics & Laser Technology, 109, 1-7(2019).

    [9] Yang Y, Lian X L, Zhou K et al. Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy[J]. Journal of Alloys and Compounds, 781, 330-336(2019).

    [10] Tang Y, Ge M Z, Wang T M et al. Effect of laser shock peening on fatigue life of GH3039 superalloy[J]. Laser & Optoelectronics Progress, 56, 221401(2019).

    [11] Liu Y P, Shi Z J, Zhao Y Z et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening[J]. Chinese Journal of Lasers, 47, 0502006(2020).

    [12] Huang Y, Zhou J Z, Li J et al. Effects of cryogenic laser peening on damping characteristics and vibration fatigue life of TC6 titanium alloy[J]. Chinese Journal of Lasers, 47, 0402011(2020).

    [13] Zan Y X, Jia W J, Zhao H Z et al. Effect of laser shock processing on residual stress and microstructure of Ti834 titanium alloy[J]. Rare Metal Materials and Engineering, 48, 3535-3540(2019).

    [14] Wu Y Z, Kong D J, Long D et al. Effects of laser shock wave on salt spray corrosion of X70 pipeline steel welded lines[J]. Transactions of the China Welding Institution, 33, 101-105, 118(2012).

    [15] Wang J T, Zhang Y K, Chen J F et al. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints[J]. Materials Science and Engineering A, 647, 7-14(2015).

    [16] Huang X, Cao Z W, Chang M et al. Effects of laser shock processing on fatigue performances of TC4 titanium alloy single-side laser modification welding joints[J]. China Mechanical Engineering, 29, 104-109(2018).

    [17] Zhang J, Sun A H, Zhu L et al. Finite element simulation of laser shock processing on the welding line restored by electro-spark overlaying[J]. Rare Metal Materials and Engineering, 40, 529-532(2011).

    [18] Wang J X, Zhang Y, Zhang X Q et al. Numerical simulation of residual stress field induced in round rod part affected by laser parameters[J]. Chinese Journal of Lasers, 43, 0802007(2016).

    [19] Lu H F, Lu J Z, Zhang W Q et al. Simulation analysis and experimental study of 316L stainless steel weldments processed by laser shock peening[J]. Laser & Optoelectronics Progress, 54, 101411(2017).

    [20] Kumar G R, Rajyalakshmi G. FE simulation for stress distribution and surface deformation in Ti-6Al-4V induced by interaction of multi scale laser shock peening parameters[J]. Optik, 206, 164280(2020).

    [21] Carney K S, Hatamleh O, Smith J et al. A numerical simulation of the residual stresses in laser-peened friction stir-welded aluminum 2195 joints[J]. International Journal of Structural Integrity, 2, 62-73(2011).

    [22] Khandkar M Z H, Khan J A, Reynolds A P et al. Predicting residual thermal stresses in friction stir welded metals[J]. Journal of Materials Processing Technology, 174, 195-203(2006).

    [23] Zhang Z W. Investigations on residual state and fatigue life of friction stir welded structure[D], 88-89(2014).

    [24] Yu H D, Zheng B, Lai X M. A modeling study of welding stress induced by friction stir welding[J]. Journal of Materials Processing Technology, 254, 213-220(2018).

    [25] Hatamleh O, Rivero I V, Swain S E. An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints[J]. Materials & Design, 30, 3367-3373(2009).

    [26] Zhang X Q, Li H, Duan S W et al. Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J]. Surface and Coatings Technology, 280, 163-173(2015).

    [27] Wang C Y, Luo K Y, Lu J Z. Effect of advancing direction on residual stress fields of AM50 Mg alloy specimens treated by double-sided laser shock peening[J]. Chinese Journal of Lasers, 43, 0303002(2016).

    [28] Hu Y X. Research on the numerical simulation and impact effects of laser shock processing[D], 71-76(2008).

    Kangmei Li, Xingzhe He, Yu Cai, Jun Hu. Stress Field Simulation of Friction Stir Welding and Laser Peening Composite Process[J]. Chinese Journal of Lasers, 2021, 48(18): 1802008
    Download Citation