• Infrared and Laser Engineering
  • Vol. 49, Issue 5, 20190489 (2020)
Song Yue1, Ran Wang1, Maojing Hou1, Gang Huang2, and Zichen Zhang1
Author Affiliations
  • 1Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
  • 2Sichuan Wisepride Industry Co. Ltd., Chengdu 610041, China
  • show less
    DOI: 10.3788/IRLA20190489 Cite this Article
    Song Yue, Ran Wang, Maojing Hou, Gang Huang, Zichen Zhang. Narrow-band perfect absorption utilizing higher-order surface plasmon resonance[J]. Infrared and Laser Engineering, 2020, 49(5): 20190489 Copy Citation Text show less
    References

    [1] R C McPhedran, I V Shadrivov, B T Kuhlmey. Metamaterials and metaoptics. NPG Asia Materials, 3, 100-108(2011).

    [2] D Schurig, J J Mock, B J Justice. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [3] C M Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon, 5, 523-530(2011).

    [4] Y Nanfang, G Patrice, M A Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [5] H Tao, N I Landy, C M Bingham. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt Express, 16, 7181-7188(2008).

    [6] J Grant, Y Ma, S Saha. Polarization insensitive terahertz metamaterial absorber. Opt Lett, 36, 1524-1526(2011).

    [7] Hua Wang, Xiaohong Sun, Zhen Wang. Characteristic analysis of metamaterial absorber in terahertz wavelength. Infrared and Laser Engineering, 45, 1225003(2016).

    [8] Yihan Li, Mile Zhang, Hailin Cui. Terahertz absorbing properties of different metal split-ring resonators. Infrared and Laser Engineering, 45, 1225002(2016).

    [9] Yongqian Li, Yongjun Guo, Lei Su. Polarization-dependent absorption of rectangular-block metamaterials in infrared region. Optics and Precision Engineering, 22, 2998-3003(2014).

    [10] Y Liao, Y Zhao, W Zhang. A wide-angle polarization-sensitive dual-band absorber in the infrared regime. Optik, 126, 4469-4471(2015).

    [11] X Shen, Y Yang, Y Zang. Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Appl Phys Lett, 101, 154102(2012).

    [12] L Lei, S Li, H Huang. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express, 26, 5686-5693(2018).

    [13] A Tittl, M G Harats, R Walter. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects. ACS Nano, 8, 10885-10892(2014).

    [14] P Nordlander, E Prodan. Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett, 4, 2209-2213(2004).

    CLP Journals

    [1] Yuzhi Chen, Xuejin Li. Single mode-no core-single mode fiber based surface plasmon resonance sensor (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201055

    [2] Sanyong Deng, Song Yue, Dongliang Zhang, Zhaojun Liu, Huiyu Li, Yuan Liu, Zichen Zhang, Lianqing Zhu. Design of solid-immersion infrared metalens[J]. Infrared and Laser Engineering, 2022, 51(3): 20210360

    Song Yue, Ran Wang, Maojing Hou, Gang Huang, Zichen Zhang. Narrow-band perfect absorption utilizing higher-order surface plasmon resonance[J]. Infrared and Laser Engineering, 2020, 49(5): 20190489
    Download Citation