• Nano-Micro Letters
  • Vol. 15, Issue 1, 200 (2023)
Xianhui Yi1, Apparao M. Rao2, Jiang Zhou3, and Bingan Lu1,4,*
Author Affiliations
  • 1School of Physics and Electronics, Hunan University, Changsha 410082, People’s Republic of China
  • 2Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA
  • 3School of Materials Science and Engineering, Central South University, Changsha 410083, People’s Republic of China
  • 4State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01178-3 Cite this Article
    Xianhui Yi, Apparao M. Rao, Jiang Zhou, Bingan Lu. Trimming the Degrees of Freedom via a K+ Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries[J]. Nano-Micro Letters, 2023, 15(1): 200 Copy Citation Text show less
    References

    [1] L. Mauler, F. Duffner, W.G. Zeier, J. Leker, Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ. Sci. 14, 4712–4739 (2021).

    [2] X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14, 2186–2243 (2021).

    [3] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    [4] Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022).

    [5] N. Xiao, W.D. McCulloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017).

    [6] L. Fan, H. Xie, Y. Hu, Z. Caixiang, A.M. Rao et al., A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315 (2023).

    [7] S.M. Ahmed, G. Suo, W.A. Wang, K. Xi, S.B. Iqbal, Improvement in potassium ion batteries electrodes: recent developments and efficient approaches. J. Energy Chem. 62, 307–337 (2021).

    [8] Y. Feng, Y. Lv, H. Fu, M. Parekh, A.M. Rao et al., Co-activation for enhanced K-ion storage in battery anodes. Sci. Rev Natl (2023).

    [9] X. Yi, J. Ge, J. Zhou, J. Zhou, B. Lu, SbVO4 based high capacity potassium anode: a combination of conversion and alloying reactions. Sci. China Chem. 64, 238–244 (2021).

    [10] J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023).

    [11] J. Peng, X. Yi, L. Fan, J. Zhou, B. Lu, Molecular extension engineering constructing long-chain organic elastomeric interphase towards stable potassium storage. Energy Lab 1, 220014 (2023).

    [12] X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13, 179 (2021).

    [13] C.D. Fincher, C.E. Athanasiou, C. Gilgenbach, M. Wang, B.W. Sheldon et al., Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 6, 2794–2809 (2022).

    [14] M.K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang et al., How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 86, 106142 (2021).

    [15] C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023).

    [16] Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023).

    [17] Z. Jiang, Z. Zeng, H. Zhang, L. Yang, W. Hu et al., Low concentration electrolyte with non-solvating cosolvent enabling high-voltage lithium metal batteries. iScience 25, 103490 (2022).

    [18] X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019).

    [19] M.S. Kim, Z. Zhang, J. Wang, S.T. Oyakhire, S.C. Kim et al., Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023).

    [20] S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lihium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    [21] N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022).

    [22] Z. Li, P. Liu, K. Zhu, Z. Zhang, Y. Si et al., Solid-state electrolytes for sodium metal batteries. Energy Fuel. 35, 9063–9079 (2021).

    [23] M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022).

    [24] T. Zhu, H. Sternlicht, Y. Ha, C. Fang, D. Liu et al., Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 8, 129–137 (2023).

    [25] Y. Wang, C.J. Zanelotti, X. Wang, R. Kerr, L. Jin et al., Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    [26] S. Xu, Z. Sun, C. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30, 2007172 (2020).

    [27] K. Chihara, A. Katogi, K. Kubota, S. Komaba, KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53, 5208–5211 (2017).

    [28] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186 (2006).

    [29] S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021).

    [30] K. Tanaka, Y. Tago, M. Kondo, Y. Watanabe, K. Nishio et al., High Li-ion conductivity in Li{N(SO2F)2}(NCCH2CH2CN)2 molecular crystal. Nano Lett. 20, 8200–8204 (2020).

    [31] S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59, 3638–3644 (2020).

    [32] X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, 1602396 (2017).

    [33] W. Wahyudi, V. Ladelta, L. Tsetseris, M.M. Alsabban, X. Guo et al., Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Funct. Mater. 31, 2101593 (2021).

    [34] M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).

    [35] S. Bi, H. Banda, M. Chen, L. Niu, M. Chen et al., Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552–558 (2020).

    [36] A.A. Kornyshev, R. Qiao, Three-dimensional double layers. J. Phys. Chem. C 118, 18285–18290 (2014).

    [37] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    [38] M.A.T. Marple, B.G. Aitken, S. Kim, S. Sen, Fast Li-ion dynamics in stoichiometric Li2S–Ga2Se3–GeSe2 glasses. Chem. Mater. 29, 8704–8710 (2017).

    [39] H.J. Kim, N. Voronina, H. Yashiro, S.-T. Myung, High-voltage stability in KFSI nonaqueous carbonate solutions for potassium-ion batteries: crrent collectors and coin-cell components. ACS Appl. Mater. Interfaces 12, 42723–42733 (2020).

    [40] X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, 1906739 (2020).

    [41] Y. Feng, A.M. Rao, J. Zhou, B. Lu, Selective potassium deposition enables dendrite-resistant anodes for ultra-stable potassium metal batteries. Adv. Mater. (2023).

    [42] H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 14, 2305 (2023).

    [43] J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26, 8103–8110 (2016).

    [44] Q. Pan, Z. Tong, Y. Su, Y. Zheng, L. Shang et al., Flat–zigzag interface design of chalcogenide heterostructure toward ultralow volume expansion for high-performance potassium storage. Adv. Mater. 34, 2203485 (2022).

    [45] C. Han, H. Wang, Z. Wang, X. Ou, Y. Tang, Solvation structure modulation of high-voltage electrolyte for high-performance K-based dual-graphite battery. Adv. Mater. 35, 2300917 (2023).

    [46] Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022).

    [47] J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020).

    [48] D.-H. Seo, H. Kim, H. Kim, W.A. Goddard, K. Kang, The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods. Energy Environ. Sci. 4, 4938–4941 (2011).

    [49] Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021).

    [50] N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs et al., Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017).

    [51] Q. Pan, Y. Zheng, Z. Tong, L. Shi, Y. Tang, Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage. Angew. Chem. Int. Ed. 60, 11835–11840 (2021).

    [52] G.-Z. Yang, Y.-F. Chen, B.-Q. Feng, C.-X. Ye, X.-B. Ye et al., Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ. Sci. 16, 1540–1547 (2023).

    [53] H. Kim, Y. Tian, G. Ceder, Origin of capacity degradation of high-voltage KVPO4F cathode. J. Electrochem. Soc. 167, 110555 (2020).

    [54] J. Touja, P.N. Le Pham, N. Louvain, L. Monconduit, L. Stievano, Effect of the electrolyte on K-metal batteries. Chem. Commun. 56, 14673–14676 (2020).

    [55] J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023).

    [56] M. Gu, A.M. Rao, J. Zhou, B. Lu, In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ. Sci. 16, 1166–1175 (2023).

    [57] X. Yi, Y. Feng, A.M. Rao, J. Zhou, C. Wang et al., Quasi-solid aqueous electrolytes for low-cost sustainable alkali metal batteries. Adv. Mater. (2023).

    [58] W.M. Seong, K.-Y. Park, M.H. Lee, S. Moon, K. Oh et al., Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 11, 970–978 (2018).

    Xianhui Yi, Apparao M. Rao, Jiang Zhou, Bingan Lu. Trimming the Degrees of Freedom via a K+ Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries[J]. Nano-Micro Letters, 2023, 15(1): 200
    Download Citation