• Photonics Insights
  • Vol. 2, Issue 1, R03 (2023)
Shenyang Huang1、2、†, Chong Wang3、4、*, Yuangang Xie2, Boyang Yu2, and Hugen Yan2、*
Author Affiliations
  • 1Institute of Optoelectronics, Fudan University, Shanghai, China
  • 2State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures of the Ministry of Education, and Department of Physics, Fudan University, Shanghai, China
  • 3Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement of the Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, China
  • 4Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, China
  • show less
    DOI: 10.3788/PI.2023.R03 Cite this Article Set citation alerts
    Shenyang Huang, Chong Wang, Yuangang Xie, Boyang Yu, Hugen Yan. Optical properties and polaritons of low symmetry 2D materials[J]. Photonics Insights, 2023, 2(1): R03 Copy Citation Text show less
    References

    [1] K. S. Novoselov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] Y. B. Zhang et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201(2005).

    [3] K. S. Novoselov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [4] C. R. Dean et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature, 497, 598(2013).

    [5] Y. Cao et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

    [6] T. Ando et al. Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn., 71, 1318(2002).

    [7] K. F. Mak et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett., 101, 196405(2008).

    [8] K. F. Mak et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [9] A. Splendiani et al. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271(2010).

    [10] K. F. Mak et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 7, 494(2012).

    [11] A. M. Jones et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol., 8, 634(2013).

    [12] G. Scuri et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett., 120, 037402(2018).

    [13] M. Amani et al. Near-unity photoluminescence quantum yield in MoS2. Science, 350, 1065(2015).

    [14] Y. M. He et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol., 10, 497(2015).

    [15] L. Ju et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630(2011).

    [16] A. K. Geim, I. V. Grigorieva. Van der Waals heterostructures. Nature, 499, 419(2013).

    [17] K. S. Novoselov et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [18] P. Rivera et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun., 6, 6242(2015).

    [19] K. Tran et al. Evidence for moire excitons in van der Waals heterostructures. Nature, 567, 71(2019).

    [20] K. L. Seyler et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 567, 66(2019).

    [21] C. Jin et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature, 567, 76(2019).

    [22] M. Xu et al. Graphene-like two-dimensional materials. Chem. Rev., 113, 3766(2013).

    [23] X. Ling et al. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA, 112, 4523(2015).

    [24] C. Gong, X. Zhang. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 363, 706(2019).

    [25] Y. Yu et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature, 575, 156(2019). https://doi.org/10.1038/s41586-019-1718-x

    [26] L. Li et al. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372(2014).

    [27] J. Qiao et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5, 4475(2014).

    [28] F. Xia et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).

    [29] J.-W. Jiang, H. S. Park. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun., 5, 4727(2014).

    [30] Z. Luo et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6, 8572(2015).

    [31] T. Low et al. Polaritons in layered two-dimensional materials. Nat. Mater., 16, 182(2017).

    [32] Z. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [33] Q. Li et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 11, 2085(2022).

    [34] L. Li et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol., 12, 21(2017).

    [35] G. Zhang et al. Infrared fingerprints of few-layer black phosphorus. Nat. Commun., 8, 14071(2017).

    [36] L. Xu et al. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M = Ge,Sn; X = S,Se,Te). Phys. Rev. B, 95, 235434(2017).

    [37] B. Aslan et al. Linearly polarized excitons in single and few-layer ReS2 crystals. ACS Photonics, 3, 96(2015).

    [38] A. Arora et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T′-ReSe2. Nano Lett., 17, 3202(2017).

    [39] C. Wang et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun., 11, 1158(2020).

    [40] W. L. Ma et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562, 557(2018).

    [41] M. Fox. Optical Properties of Solids(2001).

    [42] Y. Du et al. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys., 107, 093718(2010).

    [43] V. Tran et al. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater., 2, 044014(2015).

    [44] V. Tran et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [45] P. Li, I. Appelbaum. Electrons and holes in phosphorene. Phys. Rev. B, 90, 115439(2014).

    [46] J. O. Island et al. Environmental instability of few-layer black phosphorus. 2D Mater., 2, 011002(2015).

    [47] A. Favron et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater., 14, 826(2015).

    [48] J. D. Wood et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 14, 6964(2014).

    [49] F. Wang et al. Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy. Phys. Rev. B, 99, 075427(2019).

    [50] S. Walia et al. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater., 29, 1700152(2017).

    [51] J. S. Kim et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep., 5, 8989(2015).

    [52] C. Kamal, M. Ezawa. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B, 91, 085423(2015).

    [53] M. Zhong et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv. Funct. Mater., 28, 1802581(2018).

    [54] Y. Chen et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv. Mater., 30, 1800754(2018).

    [55] M. Z. Zhong et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano., 15, 1701(2021).

    [56] Z. Hu et al. Recent progress in 2D group IV-IV monochalcogenides: synthesis, properties and applications. Nanotechnology, 30, 252001(2019).

    [57] L. V. Titova et al. Group-IV monochalcogenides GeS, GeSe, SnS, SnSe. Chalcogenide, 119(2020).

    [58] L. C. Gomes, A. Carvalho. Electronic and optical properties of low-dimensional group-IV monochalcogenides. J. Appl. Phys., 128, 121101(2020).

    [59] R. Fei et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett., 107, 173104(2015).

    [60] L. C. Gomes, A. Carvalho. Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B, 92, 085406(2015).

    [61] H. Wang, X. Qian. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater., 4, 015042(2017).

    [62] H.-C. Hsueh et al. Polarization photoelectric conversion in layered GeS. Adv. Opt. Mater., 6, 1701194(2018).

    [63] C.-H. Ho, J.-X. Li. Polarized band-edge emission and dichroic optical behavior in thin multilayer GeS. Adv. Opt. Mater., 5, 1600814(2017).

    [64] A. Tołłoczko et al. Anisotropic optical properties of GeS investigated by optical absorption and photoreflectance. Mater. Adv., 1, 1886(2020).

    [65] C.-H. Ho et al. Study of structural, thermoelectric, and photoelectric properties of layered tin monochalcogenides SnX (X = S, Se) for energy application. ACS Appl. Energy Mater., 3, 4896(2020).

    [66] A. Tołłoczko et al. Optical properties of orthorhombic germanium selenide: an anisotropic layered semiconductor promising for optoelectronic applications. J. Mater. Chem. C, 9, 14838(2021).

    [67] Y. Xiong et al. Electronic and optoelectronic applications based on ReS2. Phys. Status Solidi, 13, 1800658(2019).

    [68] S. Bae, S. Sim. Anisotropic excitons in 2D rhenium dichalcogenides: a mini-review. J. Korean Phys. Soc., 81, 532(2022).

    [69] Y.-D. Cao et al. Anisotropy of two-dimensional ReS2 and advances in its device application. Rare Met., 40, 3357(2021).

    [70] S. Tongay et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun., 5, 3252(2014).

    [71] E. Liu et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun., 6, 6991(2015).

    [72] J. P. Echeverry, I. C. Gerber. Theoretical investigations of the anisotropic optical properties of distorted 1T ReS2 and ReSe2 monolayers, bilayers, and in the bulk limit. Phys. Rev. B, 97, 075123(2018).

    [73] M. Gehlmann et al. Direct observation of the band gap transition in atomically thin ReS2. Nano Lett., 17, 5187(2017).

    [74] J. L. Webb et al. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B, 96, 115205(2017).

    [75] J. M. Urban et al. Non equilibrium anisotropic excitons in atomically thin ReS2. 2D Mater., 6, 015012(2018).

    [76] E. Lorchat et al. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano., 10, 2752(2016).

    [77] X. F. Qiao et al. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale, 8, 8324(2016).

    [78] R. He et al. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett., 16, 1404(2016).

    [79] D. Wolverson et al. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano., 8, 11154(2014).

    [80] Y. Zhou et al. Stacking-order-driven optical properties and carrier dynamics in ReS2. Adv. Mater., 32, 1908311(2020).

    [81] C. H. Ho et al. In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals. J. Phys. Condens. Matter, 11, 5367(1999).

    [82] C. H. Ho et al. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloys Compd., 317, 222(2001).

    [83] C. H. Ho et al. Photoreflectance study of the excitonic transitions of rhenium disulphide layer compounds. Phys. Rev. B, 66, 245207(2002).

    [84] C. H. Ho, C. E. Huang. Optical property of the near band-edge transitions in rhenium disulfide and diselenide. J. Alloys Compd., 383, 74(2004).

    [85] C.-H. Ho, Z.-Z. Liu. Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy, 56, 641(2019).

    [86] Z. Zhou et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 12, 12416(2018).

    [87] S. Yang et al. Highly in-plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater., 28, 1707379(2018).

    [88] L. Li et al. 2D GeP: an unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater., 30, 1706771(2018).

    [89] G. Dushaq, M. Rasras. Multilayer 2D germanium phosphide (GeP) infrared phototransistor. Opt. Express, 29, 9419(2021).

    [90] S. Hou et al. Optical and electronic anisotropy of a 2D semiconductor SiP. Nano Res., 15, 8579(2022).

    [91] S. Zhao et al. Low-symmetry and nontoxic 2D SiP with strong polarization-sensitivity and fast photodetection. Adv. Opt. Mater., 9, 2100198(2021).

    [92] D. Kim et al. Anisotropic 2D SiAs for high-performance UV-visible photodetectors. Small, 17, 2006310(2021).

    [93] Y. Jin et al. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics. Phys. Chem. Chem. Phys., 17, 18665(2015).

    [94] J. O. Island et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Mater., 4, 022003(2017).

    [95] J. Dai, X. C. Zeng. Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem. Int. Ed. Engl., 54, 7572(2015).

    [96] S. Liu et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 29, 184002(2018).

    [97] J. Kang, L. W. Wang. Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys., 18, 14805(2016).

    [98] E. Torun et al. Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3. Phys. Rev. B, 98, 075419(2018).

    [99] Z. Lian et al. Anisotropic band structure of TiS3 nanoribbon revealed by polarized photocurrent spectroscopy. Appl. Phys. Lett., 117, 073101(2020).

    [100] J. Qiao et al. Highly in-plane anisotropic two-dimensional ternary Ta2NiSe5 for polarization-sensitive photodetectors. ACS Appl. Mater. Interfaces, 13, 17948(2021).

    [101] M. Zhao et al. Nb2SiTe4: a stable narrow-gap two-dimensional material with ambipolar transport and mid-infrared response. ACS Nano, 13, 10705(2019).

    [102] F. Wang et al. Anisotropic infrared response and orientation-dependent strain-tuning of the electronic structure in Nb2SiTe4. ACS Nano, 16, 8107(2022).

    [103] H. Liu et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [104] A. Castellanos-Gomez et al. Isolation and characterization of few-layer black phosphorus. 2D Mater., 1, 025001(2014).

    [105] S. Zhang et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano, 8, 9590(2014).

    [106] X. Wang et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517(2015).

    [107] J. Pei et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun., 7, 10450(2016).

    [108] R. Xu et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors. ACS Nano, 10, 2046(2016).

    [109] A. Surrente et al. Excitons in atomically thin black phosphorus. Phys. Rev. B, 93, 121405(R)(2016).

    [110] F. Wang et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun., 12, 5628(2021).

    [111] M. R. Molas et al. Photoluminescence as a probe of phosphorene properties. NPJ 2D Mater. Appl., 5, 83(2021).

    [112] R. Xu et al. Exciton brightening in monolayer phosphorene via dimensionality modification. Adv. Mater., 28, 3493(2016).

    [113] A. Sharma et al. Defect engineering in few-layer phosphorene. Small, 14, 1704556(2018).

    [114] A. Khatibi et al. Defect engineering in few-layer black phosphorus for tunable and photostable infrared emission. Opt. Mater. Express, 10, 1488(2020).

    [115] E. Carré et al. Excitons in bulk black phosphorus evidenced by photoluminescence at low temperature. 2D Mater., 8, 021001(2021).

    [116] C. Chen et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett., 19, 1488(2019).

    [117] J. Wang et al. Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano Lett., 20, 3651(2020).

    [118] Y. Zhang et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv. Mater., 32, 1808319(2020).

    [119] H. Zhao et al. Band structure and photoelectric characterization of GeSe monolayers. Adv. Funct. Mater., 28, 1704855(2017).

    [120] N. B. Mohamed et al. Photoluminescence quantum yields for atomically thin-layered ReS2: identification of indirect-bandgap semiconductors. Appl. Phys. Lett., 113, 121112(2018).

    [121] H. Zhao et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res., 8, 3651(2015).

    [122] J. Jadczak et al. Exciton binding energy and hydrogenic Rydberg series in layered ReS2. Sci. Rep., 9, 1578(2019).

    [123] A. Khatibi et al. Anisotropic infrared light emission from quasi-1D layered TiS3. 2D Mater., 7, 015022(2019).

    [124] A. Pant et al. Strong dichroic emission in the pseudo one dimensional material ZrS3. Nanoscale, 8, 16259(2016).

    [125] J. Xiao et al. Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics, 6, 1309(2017).

    [126] G. Wang et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 90, 021001(2018).

    [127] N. P. Wilson et al. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 599, 383(2021).

    [128] A. Chernikov et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 113, 076802(2014).

    [129] G. Zhang et al. The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nat. Commun., 11, 1847(2020).

    [130] T. Olsen et al. Simple screened hydrogen model of excitons in two-dimensional materials. Phys. Rev. Lett., 116, 056401(2016).

    [131] B. R. Tuttle et al. Large excitonic effects in group-IV sulfide monolayers. Phys. Rev. B, 92, 235405(2015).

    [132] H.-X. Zhong et al. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted1Tdiamond-chain structures ReS2 and ReSe2. Phys. Rev. B, 92, 115438(2015).

    [133] R. Oliva et al. Pressure dependence of direct optical transitions in ReS2 and ReSe2. NPJ 2D Mater. Appl., 3, 20(2019).

    [134] Z. Z. Qiu et al. Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Sci. Adv., 5, eaaw2347(2019).

    [135] X. Wang et al. Experimental evidence of anisotropic and stable charged excitons (trions) in atomically thin 2D ReS2. Adv. Funct. Mater., 29, 1905961(2019).

    [136] A. J. Molina-Mendoza et al. Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater., 1, 1500126(2015).

    [137] A. S. Rodin et al. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B, 90, 075429(2014).

    [138] A. Chaves et al. Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials. Phys. Rev. B, 93, 115314(2016).

    [139] L. Liang et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett., 14, 6400(2014).

    [140] T. Deilmann, K. S. Thygesen. Unraveling the not-so-large trion binding energy in monolayer black phosphorus. 2D Mater., 5, 041007(2018).

    [141] G. W. Zhang et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv., 4, eaap9977(2018).

    [142] G. Shi, E. Kioupakis. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett., 15, 6926(2015).

    [143] L. C. Gomes et al. Strongly bound Mott-Wannier excitons in GeS and GeSe monolayers. Phys. Rev. B, 94, 155428(2016).

    [144] A. Dhara et al. Additional excitonic features and momentum-dark states in ReS2. Phys. Rev. B, 102, 161404(R)(2020).

    [145] M. Van der Donck, F. M. Peeters. Excitonic complexes in anisotropic atomically thin two-dimensional materials: black phosphorus and TiS3. Phys. Rev. B, 98, 235401(2018).

    [146] L. Zhou et al. Unconventional excitonic states with phonon sidebands in layered silicon diphosphide. Nat. Mater., 21, 773(2022).

    [147] K. Hwangbo et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol., 16, 655(2021).

    [148] J. Klein et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D quantum material(2022).

    [149] A. Autere et al. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1705963(2018).

    [150] H. Liu et al. Nonlinear optical properties of anisotropic two-dimensional layered materials for ultrafast photonics. Nanophotonics, 9, 1651(2020).

    [151] D. Hanlon et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun., 6, 8563(2015).

    [152] S. B. Lu et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 23, 11183(2015).

    [153] Y. Wang et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl. Phys. Lett., 107, 091905(2015).

    [154] D. Li et al. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep., 5, 15899(2015).

    [155] J. Sotor et al. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett., 107, 051108(2015).

    [156] X. Meng et al. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv. Opt. Mater., 6, 1800137(2018).

    [157] D. Biswas et al. Narrow-band anisotropic electronic structure of ReS2. Phys. Rev. B, 96, 085205(2017).

    [158] Y. Zhou et al. Nonlinear optical absorption of ReS2 driven by stacking order. ACS Photonics, 8, 405(2021).

    [159] C. Zhang et al. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all-optical switching. Adv. Opt. Mater., 7, 1900631(2019).

    [160] Y. Ye et al. Linear and nonlinear optical properties of few-layer exfoliated SnSe nanosheets. Adv. Opt. Mater., 7, 1800579(2019).

    [161] M. J. Rodrigues et al. Resonantly increased optical frequency conversion in atomically thin black phosphorus. Adv. Mater., 28, 10693(2016).

    [162] N. Youngblood et al. Layer-tunable third-harmonic generation in multilayer black phosphorus. ACS Photonics, 4, 8(2016).

    [163] A. Autere et al. Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy. J. Phys. Chem. Lett., 8, 1343(2017).

    [164] Q. Cui et al. Strong and anisotropic third-harmonic generation in monolayer and multilayer ReS2. Phys. Rev. B, 95, 165406(2017).

    [165] Y. Song et al. Extraordinary second harmonic generation in ReS2 atomic crystals. ACS Photonics, 5, 3485(2018).

    [166] M. Zhu et al. Efficient and anisotropic second harmonic generation in few-layer SnS film. Adv. Opt. Mater., 9, 2101200(2021).

    [167] S. R. Panday, B. M. Fregoso. Strong second harmonic generation in two-dimensional ferroelectric IV-monochalcogenides. J. Phys. Condens. Matter, 29, 43LT01(2017).

    [168] H. Wang, X. Qian. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett., 17, 5027(2017).

    [169] A. Chaves et al. Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater. Appl., 4, 29(2020).

    [170] C. Lin et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material. Nano Lett., 16, 1683(2016).

    [171] W. S. Whitney et al. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett., 17, 78(2017).

    [172] M. C. Sherrott et al. Anisotropic quantum well electro-optics in few-layer black phosphorus. Nano Lett., 19, 269(2019).

    [173] C. Chen et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv., 6, eaay6134(2020).

    [174] J. Kim et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 349, 723(2015).

    [175] A. N. Rudenko, M. I. Katsnelson. Quasiparticle band structure and tight-binding model for single and bilayer black phosphorus. Phys. Rev. B, 89, 201408(R)(2014).

    [176] J. Quereda et al. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett., 16, 2931(2016).

    [177] H. Kim et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature, 596, 232(2021).

    [178] T. Hu et al. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology, 25, 455703(2014).

    [179] H. J. Duan et al. Electronic structure and optic absorption of phosphorene under strain. Physica E Low Dimens. Syst. Nanostruct., 81, 177(2016).

    [180] Z. C. Zhang et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett., 17, 6097(2017).

    [181] S. Huang et al. Strain-tunable van der Waals interactions in few-layer black phosphorus. Nat. Commun., 10, 2447(2019).

    [182] L. Zhang et al. 2D materials and heterostructures at extreme pressure. Adv. Sci., 7, 2002697(2020).

    [183] S. Pei et al. High pressure studies of 2D materials and heterostructures: a review. Mater. Des., 213, 110363(2022).

    [184] C. Bousige et al. Biaxial strain transfer in supported graphene. Nano Lett., 17, 21(2017).

    [185] L. Seixas et al. Exciton binding energies and luminescence of phosphorene under pressure. Phys. Rev. B, 91, 115437(2015).

    [186] Y. Akahama, H. Kawamura. Optical and electrical studies on band-overlapped metallization of the narrow-gap semiconductor black phosphorus with layered structure. Phys. Status Solidi B, 223, 349(2001).

    [187] Z. J. Xiang et al. Pressure-induced electronic transition in black phosphorus. Phys. Rev. Lett., 115, 186403(2015).

    [188] S. Huang et al. Layer-dependent pressure effect on the electronic structure of 2D black phosphorus. Phys. Rev. Lett., 127, 186401(2021).

    [189] W. Wen et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1-x)Se2x alloys with distorted 1T structure. Small, 13, 1603788(2017).

    [190] B. Liu et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater., 27, 4423(2015).

    [191] M. Amani et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 11, 11724(2017).

    [192] J. Zhou et al. Layered intercalation materials. Adv. Mater., 33, 2004557(2021).

    [193] M. Rajapakse et al. Electrochemical Li intercalation in black phosphorus: in situ and ex situ studies. J. Phys. Chem. C, 124, 10710(2020).

    [194] S. W. Lee et al. Anisotropic angstrom-wide conductive channels in black phosphorus by top-down Cu intercalation. Nano Lett., 21, 6336(2021).

    [195] C. Wang et al. Monolayer atomic crystal molecular superlattices. Nature, 555, 231(2018).

    [196] K. F. Mak, J. Shan. Opportunities and challenges of interlayer exciton control and manipulation. Nat. Nanotechnol., 13, 974(2018).

    [197] H. X. Jiao et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv., 8, eabn1811(2022).

    [198] S. Wu et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nat. Commun., 13, 3198(2022).

    [199] Y. F. Chen et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. Sci. Adv., 8, eabq1781(2022).

    [200] X. R. Zong et al. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl., 9, 114(2020).

    [201] L. Balents et al. Superconductivity and strong correlations in moiré flat bands. Nat. Phys., 16, 725(2020).

    [202] K. F. Mak, J. Shan. Semiconductor moire materials. Nat. Nanotechnol., 17, 686(2022).

    [203] S. Zhao et al. Anisotropic moire optical transitions in twisted monolayer/bilayer phosphorene heterostructures. Nat. Commun., 12, 3947(2021).

    [204] T. Cao et al. Gate switchable transport and optical anisotropy in 90 degrees twisted bilayer black phosphorus. Nano Lett., 16, 5542(2016).

    [205] P. K. Srivastava et al. Resonant tunnelling diodes based on twisted black phosphorus homostructures. Nat. Electron., 4, 269(2021).

    [206] K. Huang. Lattice vibrations and optical waves in ionic crystals. Nature, 167, 779(1951).

    [207] J. J. Hopfield. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev., 112, 1555(1958).

    [208] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82(2012).

    [209] J. N. Chen et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77(2012).

    [210] A. Nemilentsau et al. Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett., 116, 066804(2016).

    [211] H. N. S. Krishnamoorthy et al. Topological transitions in metamaterials. Science, 336, 205(2012).

    [212] S. Abedini Dereshgi et al. Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes. Nat. Commun., 11, 5771(2020). https://doi.org/10.1038/s41467-020-19499-x

    [213] I. I. Smolyaninov et al. Magnifying superlens in the visible frequency range. Science, 315, 1699(2007).

    [214] Z. Zheng et al. Controlling and focusing in-plane hyperbolic phonon polaritons in α-MoO3 with a curved plasmonic antenna. Adv. Mater., 34, 2104164(2022). https://doi.org/10.1002/adma.202104164

    [215] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [216] S. Dai et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun., 6, 6963(2015).

    [217] P. N. Li et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun., 6, 7507(2015).

    [218] J. Martin-Sanchez et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Sci. Adv., 7, eabj0127(2021).

    [219] P. Li et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun., 11, 3663(2020).

    [220] Q. Yan et al. Canalization acoustic phonon polaritons in metal-MoO3-metal sandwiched structures for nano-light guiding and manipulation. J. Opt., 24, 024006(2022).

    [221] G. Álvarez-Pérez et al. Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated graphene. ACS Photonics, 9, 383(2022).

    [222] M. Chen et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 19, 1307(2020). https://doi.org/10.1038/s41563-020-0732-6

    [223] Z. Zheng et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett., 20, 5301(2020).

    [224] J. Duan et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett., 20, 5323(2020).

    [225] G. Hu et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209(2020). https://doi.org/10.1038/s41586-020-2359-9

    [226] F. L. Ruta et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun., 13, 3719(2022). https://doi.org/10.1038/s41467-022-31477-z

    [227] Y. L. Zeng et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett., 22, 4260(2022).

    [228] J. Duan et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci. Adv., 7, eabf2690(2021).

    [229] Q. Zhang et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett., 21, 3112(2021). https://doi.org/10.1021/acs.nanolett.1c00281

    [230] F. Hu et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photonics, 11, 356(2017).

    [231] D. Correas-Serrano et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization. J. Opt., 18, 104006(2016).

    [232] W. Dong et al. Broad-spectral-range sustainability and controllable excitation of hyperbolic phonon polaritons in α-MoO3. Adv. Mater., 32, 2002014(2020). https://doi.org/10.1002/adma.202002014

    [233] A. Ambrosio et al. Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light Sci. Appl., 7, 27(2018).

    [234] S. Dai et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett., 17, 5285(2017).

    [235] T. Wang et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics, 4, 1753(2017).

    [236] W. Zhou et al. Atomically localized plasmon enhancement in monolayer graphene. Nat. Nanotechnol., 7, 161(2012).

    [237] F. P. Schmidt et al. Dark plasmonic breathing modes in silver nanodisks. Nano Lett., 12, 5780(2012).

    [238] B. Bartolo Di et al. Quantum Nano-Photonics(2018).

    [239] Z. B. Zheng et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv., 5, eaav8690(2019).

    [240] J. D. Caldwell et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun., 5, 5221(2014).

    [241] C. J. Winta et al. Low-temperature infrared dielectric function of hyperbolic alpha-quartz. Phys. Rev. B, 99, 144308(2019).

    [242] J. Sun et al. Indefinite permittivity and negative refraction in natural material: graphite. Appl. Phys. Lett., 98, 101901(2011).

    [243] J. Taboada-Gutierrez et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater., 19, 964(2020).

    [244] T. Nörenberg et al. Germanium monosulfide as a natural platform for highly anisotropic THz polaritons. ACS Nano, 16, 20174(2022).

    [245] C. C. Homes et al. Optical properties of the perfectly compensated semimetal WTe2. Phys. Rev. B, 92, 161109(R)(2015).

    [246] A. J. Frenzel et al. Anisotropic electrodynamics of type-II Weyl semimetal candidate WTe2. Phys. Rev. B, 95, 245140(2017).

    [247] S. Tang et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nat. Phys., 13, 683(2017).

    [248] E. Sajadi et al. Gate-induced superconductivity in a monolayer topological insulator. Science, 362, 922(2018).

    [249] Z. Fei et al. Ferroelectric switching of a two-dimensional metal. Nature, 560, 336(2018).

    [250] Z. Torbatian et al. Tunable low-loss hyperbolic plasmon polaritons in a Td-WTe2 single layer. Phys. Rev. Appl., 14, 044014(2020).

    [251] R. Jing et al. Terahertz response of monolayer and few-layer WTe2 at the nanoscale. Nat. Commun., 12, 5594(2021).

    [252] T. Low et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett., 113, 106802(2014).

    [253] F. Jin et al. Screening and plasmons in pure and disordered single and bilayer black phosphorus. Phys. Rev. B, 92, 115440(2015).

    [254] V. A. Margulis, E. E. Muryumin. Theory for surface polaritons supported by a black-phosphorus monolayer. Phys. Rev. B, 98, 165305(2018).

    [255] J. Sun et al. Indefinite by nature: from ultraviolet to terahertz. ACS Photonics, 1, 293(2014).

    [256] J. Zhao et al. Highly anisotropic two-dimensional metal in monolayer MoOCl2. Phys. Rev. B, 102, 245419(2020).

    [257] E. Huang et al. Monolayer NaW2O2Br6: a gate tunable near-infrared hyperbolic plasmonic surface. Nanoscale Adv., 4, 3282(2022).

    [258] M. Dehdast et al. Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide. Carbon, 178, 625(2021).

    [259] Y. U. Lee et al. Low-loss organic hyperbolic materials in the visible spectral range: a joint experimental and first-principles study. Adv. Mater., 32, 2002387(2020).

    [260] Z. Torbatian et al. Hyperbolic plasmon modes in tilted Dirac cone phases of borophene. Phys. Rev. B, 104, 075432(2021).

    [261] C. Wang et al. The optical properties and plasmonics of anisotropic 2D materials. Adv. Opt. Mater., 8, 1900996(2019).

    [262] S. Ghosh et al. Microcavity exciton polaritons at room temperature. Photon. Insights, 1, R04(2022).

    [263] I. Epstein et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater., 7, 035031(2020).

    [264] F. Wang et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun., 12, 5628(2021).

    [265] S. Huang et al. From anomalous to normal: temperature dependence of the band gap in two-dimensional black phosphorus. Phys. Rev. Lett., 125, 156802(2020).

    [266] S. Biswas et al. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science, 374, 448(2021).

    [267] S. Biswas et al. Tunable intraband optical conductivity and polarization-dependent epsilon-near-zero behavior in black phosphorus. Sci. Adv., 7, eabd4623(2021).

    [268] Y. Cao et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

    [269] M. Renuka et al. Dispersion engineering of hyperbolic plasmons in bilayer 2D materials. Opt. Lett., 43, 5737(2018).

    [270] G. Hu et al. Moiré hyperbolic metasurfaces. Nano Lett., 20, 3217(2020).

    [271] C. Zheng et al. Molding broadband dispersion in twisted trilayer hyperbolic polaritonic surfaces. ACS Nano, 16, 13241(2022).

    [272] P. Li et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater., 15, 870(2016).

    [273] K. Chaudhary et al. Polariton nanophotonics using phase-change materials. Nat. Commun., 10, 4487(2019).

    [274] T. G. Folland et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun., 9, 4371(2018).

    [275] S. Abedini Dereshgi et al. Tuning of optical phonons in α-MoO3–VO2 multilayers. ACS Appl. Mater. Interfaces, 13, 48981(2021). https://doi.org/10.1021/acsami.1c12320

    [276] N. A. Aghamiri et al. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat. Commun., 13, 4511(2022).

    [277] K. Zhou et al. Actively tuning anisotropic light-matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene(2022). https://doi.org/10.48550/arXiv.2206.04534

    [278] Y. Wu et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun., 11, 2646(2020). https://doi.org/10.1038/s41467-020-16459-3

    [279] B. W. Reed et al. Chemically tuning quantized acoustic phonons in 2D layered MoO3 nanoribbons. Nano Lett., 19, 4406(2019).

    [280] Y. Wu et al. Efficient and tunable reflection of phonon polaritons at built-in intercalation interfaces. Adv. Mater., 33, 2008070(2021).

    [281] A. Woessner et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater., 14, 421(2015).

    [282] A. Bapat et al. Gate tunable light–matter interaction in natural biaxial hyperbolic van der Waals heterostructures. Nanophotonics, 11, 2329(2022).

    [283] Z. Li et al. Electrical manipulation of plasmon-phonon polaritons in eterostructures of graphene on biaxial crystals(2022).

    [284] H. Hu et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol., 17, 940(2022). https://doi.org/10.1038/s41565-022-01185-2

    [285] S. Dixit et al. Mid infrared polarization engineering via sub-wavelength biaxial hyperbolic van der Waals crystals. Sci. Rep., 11, 6612(2021).

    [286] N. R. Sahoo et al. High temperature mid-IR polarizer via natural in-plane hyperbolic van der Waals crystals. Adv. Opt. Mater., 10, 2101919(2021).

    [287] C. Wei et al. Polarization reflector/color filter at visible frequencies via anisotropic α-MoO3. Adv. Opt. Mater., 8, 2000088(2020). https://doi.org/10.1002/adom.202000088

    [288] S. Biswas et al. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science, 374, 448(2021).

    [289] B. Wu et al. Strong extrinsic chirality in biaxial hyperbolic material α-MoO3 with in-plane anisotropy. Appl. Opt., 60, 4599(2021). https://doi.org/10.1364/AO.426098

    [290] E. Petronijevic et al. Extrinsic chirality and circular dichroism at visible frequencies enabled by birefringent α-MoO3 nanoscale-thick films: implications for chiro-optical control. ACS Appl. Nano Mater., 5, 5609(2022). https://doi.org/10.1021/acsanm.2c00565

    [291] K. Khaliji et al. Twisted two-dimensional material stacks for polarization optics. Phys. Rev. Lett., 128, 193902(2022).

    [292] B.-Y. Wu et al. Strong chirality in twisted bilayer α-MoO3. Chin. Phys. B, 31, 044101(2022). https://doi.org/10.1088/1674-1056/ac3740

    [293] C. Rizza et al. Enhanced asymmetric transmission in hyperbolic epsilon-near-zero slabs. J. Opt., 20, 085001(2018).

    [294] X. Wu et al. Asymmetric reflection induced in reciprocal hyperbolic materials. ACS Photonics, 9, 2774(2022).

    [295] A. J. Sternbach et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science, 371, 617(2021).

    [296] Z. Dai et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun., 11, 6086(2020).

    [297] G. Álvarez-Pérez et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv., 8, eabp8486(2022).

    [298] Y. Qu et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3. Adv. Mater., 34, 2105590(2022). https://doi.org/10.1002/adma.202105590

    [299] D. Correas-Serrano et al. Plasmon canalization and tunneling over anisotropic metasurfaces. Phys. Rev. B, 96, 075436(2017).

    [300] P.-H. Chang et al. Field canalization using anisotropic 2D plasmonics. NPJ 2D Mater. Appl., 6, 5(2022).

    [301] H. Hu et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol., 17, 940(2022). https://doi.org/10.1038/s41565-022-01185-2

    [302] J. Jiang et al. Broadband negative refraction of highly squeezed hyperbolic polaritons in 2D materials. Research, 2018, 2532819(2018).

    [303] A. Nemilentsau et al. Switchable and unidirectional plasmonic beacons in hyperbolic two-dimensional materials. Phys. Rev. B, 99, 201405(2019).

    [304] Q. Zhang et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv., 8, eabn9774(2022).

    [305] H. Liu et al. Spontaneous emission modulation in biaxial hyperbolic van der Waals material. J. Appl. Phys., 132, 175105(2022).

    [306] W. Lyu et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale, 13, 12720(2021).

    [307] H. Hu et al. Gas identification with graphene plasmons. Nat. Commun., 10, 1131(2019).

    [308] I. H. Lee et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol., 14, 313(2019).

    [309] C. Wu et al. Ultrasensitive mid-infrared biosensing in aqueous solutions with graphene plasmon. Adv. Mater., 34, 2110525(2022).

    [310] M. Autore et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl., 7, 17172(2018).

    [311] W. Gao et al. Macroscopically aligned carbon nanotubes as a refractory platform for hyperbolic thermal emitters. ACS Photonics, 6, 1602(2019).

    [312] C.-L. Zhou et al. Polariton topological transition effects on radiative heat transfer. Phys. Rev. B, 103, 155404(2021).

    [313] C.-L. Zhou et al. Tunable near-field radiative effect in a Td–WTe2 single layer. Phys. Rev. Appl., 17, 014044(2022).

    [314] L. Ge et al. Control of near-field radiative heat transfer based on anisotropic 2D materials. AIP Adv., 8, 085321(2018).

    [315] J. Shen et al. Near-field thermal radiation between nanostructures of natural anisotropic material. Phys. Rev. Appl., 10, 034029(2018).

    [316] H. Salihoglu, X. Xu. Near-field radiative heat transfer enhancement using natural hyperbolic material. J. Quant. Spectrosc. Radiat. Transf., 222-223, 115(2019).

    [317] X. Wu et al. Near-field radiative heat transfer between two α-MoO3 biaxial crystals. J. Heat Transfer, 142, 072802(2020). https://doi.org/10.1115/1.4046968

    [318] X. Wu, R. Liu. Near-field radiative heat transfer between graphene covered biaxial hyperbolic materials. ES Energy Environ., 10, 66(2020).

    [319] R. Liu et al. Near-field radiative heat transfer via coupling graphene plasmons with different phonon polaritons in the reststrahlen bands. Eng. Sci., 18, 224(2022).

    [320] Y. Deng et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563, 94(2018).

    [321] Y. Huang et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun., 11, 2453(2020).

    [322] S. Wu et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69(2015).

    [323] X. Liu et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics, 9, 30(2014).

    [324] M. A. Mojarro et al. Hyperbolic plasmons in massive tilted two-dimensional Dirac materials. Phys. Rev. B, 105, L201408(2022).

    [325] J. C. W. Song, M. S. Rudner. Fermi arc plasmons in Weyl semimetals. Phys. Rev. B, 96, 205443(2017).

    [326] A. Grankin, V. Galitski. Interplay of hyperbolic plasmons and superconductivity(2022).

    Shenyang Huang, Chong Wang, Yuangang Xie, Boyang Yu, Hugen Yan. Optical properties and polaritons of low symmetry 2D materials[J]. Photonics Insights, 2023, 2(1): R03
    Download Citation