• Advanced Photonics
  • Vol. 3, Issue 2, 024002 (2021)
Dezhi Tan1、*, Zhuo Wang1, Beibei Xu1, and Jianrong Qiu1、2、*
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 2Chinese Academy of Sciences, CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.3.2.024002 Cite this Article Set citation alerts
    Dezhi Tan, Zhuo Wang, Beibei Xu, Jianrong Qiu. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 2021, 3(2): 024002 Copy Citation Text show less
    References

    [1] A. W. Elshaari et al. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020).

    [2] M. Gräfe, A. Szameit. Integrated photonic quantum walks. Phys., 53, 073001(2020).

    [3] L. Li et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 8, 643-649(2014).

    [4] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [5] K. M. Davis et al. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 21, 1729-1731(1996).

    [6] E. N. Glezer et al. Three-dimensional optical storage inside transparent materials. Opt. Lett., 21, 2023-2035(1996).

    [7] D. Z. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596-600(2018).

    [8] Z. Wang, D. Z. Tan, J. R. Qiu. Single-shot photon recording for three-dimensional memory with prospects of high capacity. Opt. Lett., 45, 6274-6277(2020).

    [9] K. J. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [10] W. J. Yang, P. G. Kazansky, Y. P. Svirko. Non-reciprocal ultrafast laser writing. Nat. Photonics, 2, 99-104(2008).

    [11] D. Z. Tan et al. Single-pulse-induced ultra-fast spatial clustering of metal in glass: fine tunability and application. Adv. Photonics Res.(2021).

    [12] Y. Hu et al. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. Adv. Mater., 32, 2002356(2020).

    [13] S. Jiang et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration. Adv. Mater., 31, 1807507(2019).

    [14] T. Meany et al. Laser written circuits for quantum photonics. Laser Photonics Rev., 9, 363-384(2015).

    [15] D. Z. Tan et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci., 76, 154-228(2016).

    [16] K. Miura et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 71, 3329-3331(1997).

    [17] S. M. Eaton, H. Zhang, P. R. Herman. Heat accumulation effects in femtosecond laser written waveguides with variable repetition rate. Opt. Express, 13, 4708-4716(2005).

    [18] A. Szameit, S. Nolte. Discrete optics in femtosecond-laser written photonic structures. J. Phys. B At. Mol. Opt. Phys., 43, 163001(2010).

    [19] R. G. H. van Uden et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 8, 865-870(2014).

    [20] X. Y. Xu et al. Shining light on quantum transport in fractal networks(2020).

    [21] A. Couairona, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [22] Q. Sun et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J. Opt. A Pure Appl. Opt., 7, 655-659(2005).

    [23] Y. Cheng et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett., 28, 55-57(2003).

    [24] N. Bisch et al. Adaptive optics aberration correction for deep direct laser written waveguides in the heating regime. Appl. Phys. A, 125, 364(2019).

    [25] M. Ams et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express, 13, 5676-5681(2005).

    [26] V. D. Blanco et al. Deep subsurface waveguides with circular cross section produced by femtosecond laser writing. Appl. Phys. Lett., 91, 051104(2007).

    [27] D. Liu et al. Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing. Appl. Phys. A, 84, 257-260(2006).

    [28] S. Gross, M. J. Withford. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics, 4, 332-335(2015).

    [29] G. Cerullo et al. Femtosecond micromachining of symmetric waveguides at 1.5  μm by astigmatic beam focusing. Opt. Lett., 27, 1938-1940(2002). https://doi.org/10.1364/OL.27.001938

    [30] F. He et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett., 35, 1106-1108(2010).

    [31] R. Osellame et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B, 20, 1559-1567(2003).

    [32] P. R. Varona et al. Slit beam shaping technique for femtosecond laser inscription of enhanced plane-by-plane FBGs. J. Lightwave Technol., 38, 4526-4532(2020).

    [33] V. D. Michele et al. Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Opt. Mater. Express, 9, 4624-4633(2019).

    [34] M. Royon et al. X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica. Opt. Mater. Express, 9, 65-74(2019).

    [35] K. Mishchik et al. Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass. Opt. Mater. Express, 3, 67-85(2013).

    [36] G. D. Marshall et al. Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. Opt. Lett., 33, 956-958(2008).

    [37] D. Marshall, M. Ams, M. J. Withford. Direct laser written waveguide–Bragg gratings in bulk fused silica Graham. Opt. Lett., 31, 2690-2692(2006).

    [38] A. R. De la Cruz et al. Modeling of astigmatic-elliptical beam shaping during fs-laser waveguide writing including beam truncation and diffraction effects. Appl. Phys. A, 104, 687-693(2011).

    [39] Y. Wang et al. Quantum topological boundary states in quasi-crystals. Adv. Mater., 31, 1905624(2019).

    [40] R. J. Ren et al. Identical quantum sources integrated on a single silica chip(2020).

    [41] J. P. Brub, R. Valle. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass. Opt. Lett., 41, 3074-3077(2016).

    [42] J. P. Bérubé et al. Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses. Opt. Mater. Express, 7, 3124-3135(2017).

    [43] C. Y. Wang, J. Gao, X. M. Jin. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Opt. Lett., 44, 102-105(2019).

    [44] C. Liu et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett., 125, 260504(2020).

    [45] R. Osellame et al. Lasing in femtosecond laser written optical waveguides. Appl. Phys. A, 93, 17-26(2008).

    [46] Z. H. Wang et al. Interferometric characterization of pulse front tilt of spatiotemporally focused femtosecond laser pulses. Opt. Express, 22, 26328-26337(2014).

    [47] B. Sun et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl., 7, 17117(2018).

    [48] A. Patel et al. Non-paraxial polarization spatio-temporal coupling in ultrafast laser material processing. Laser Photonics Rev., 11, 1600290(2017).

    [49] R. Kammel et al. Simultaneous spatial and temporal focusing: a route towards confined nonlinear materials processing. Proc. SPIE, 9736, 97360T(2016).

    [50] P. Wang et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses. Opt. Lett., 43, 3485-3488(2018).

    [51] F. He et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining. New J. Phys., 13, 083014(2011).

    [52] E. Block et al. Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems. Opt. Lett., 39, 6915-6918(2014).

    [53] J. Squier et al. High average power Yb:CaF femtosecond amplifier with integrated simultaneous spatial and temporal focusing for laser material processing. Appl. Phys. A, 114, 209-214(2014).

    [54] D. N. Vitek et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt. Express, 18, 18086-18094(2010).

    [55] G. Zhu et al. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 13, 2153-2159(2005).

    [56] B. Leshem et al. When can temporally focused excitation be axially shifted by dispersion?. Opt. Express, 22, 7087-7098(2014).

    [57] R. Kammel et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci. Appl., 3, e169(2014).

    [58] P. S. Salter et al. Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett., 37, 470-472(2012).

    [59] L. Huang et al. Aberration correction for direct laser written waveguides in a transverse geometry. Opt. Express, 24, 10565-10574(2016).

    [60] P. S. Salter et al. Adaptive optics in laser processing. Light Sci. Appl., 8, 110(2019).

    [61] M. Sakakura et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Express, 18, 12136-12143(2010). https://doi.org/10.1364/OE.18.012136

    [62] M. Pospiech et al. Single-sweep laser writing of 3D-waveguide devices. Opt. Express, 18, 6994-7001(2010).

    [63] C. Mauclair et al. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt. Express, 17, 3531-3542(2009).

    [64] P. S. Salter, M. J. Booth. Dynamic optical methods for direct laser written waveguides. Proc. SPIE, 8613, 86130A(2013).

    [65] Y. Nasu, M. Kohtoku, Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett., 30, 723-725(2005).

    [66] R. Keil et al. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase. APL Photonics, 1, 081302(2016).

    [67] D. Z. Tan et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing. Opt. Lett., 45, 3941-3944(2020).

    [68] S. Gross et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev., 8, L81-L85(2014).

    [69] R. Mary, D. Choudhury, A. K. Kar. Applications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top. Quantum. Electron, 20, 72-84(2014).

    [70] M. D. Mackenzie et al. GLS and GLSSe ultrafast laser inscribed waveguides for mid-IR supercontinuum generation. Opt. Mater. Express, 9, 643-651(2019).

    [71] Z. M. Liu et al. Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses. Sci. China-Phys. Mech. Astron., 61, 070322(2018).

    [72] R. Heilmann et al. Tapering of femtosecond laser-written waveguides. Appl. Opt., 57, 377-381(2018).

    [73] N. D. Psaila et al. Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass. Opt. Express, 14, 10452-10459(2006).

    [74] H. L. Butcher et al. Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass. OSA Continuum., 1, 221-228(2018).

    [75] L. Helen et al. Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2. Opt. Express, 26, 10930-10943(2018).

    [76] G. Demetriou et al. Nonlinear refractive index of ultrafast laser inscribed waveguides in gallium lanthanum sulphide. Appl. Opt., 56, 5407-5411(2017).

    [77] R. R. Thomson, A. K. Kar, J. Allington-Smith. Ultrafast laser inscription: an enabling technology for astrophotonics. Opt. Express, 17, 1963-1969(2009).

    [78] R. R. Thomson et al. Ultrafast laser inscription of an integrated photonic lantern. Opt. Express, 19, 5698-5705(2011).

    [79] G. Douglass et al. Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns. Opt. Express, 26, 1497-1505(2018).

    [80] B. R. M. Norris et al. First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument. Mon. Not. R. Astron. Soc., 491, 4180-4193(2020).

    [81] L. A. Fernandes et al. Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica. Opt. Express, 20, 24103-24114(2012).

    [82] G. Corrielli et al. Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. Opt. Express, 26, 15101-15109(2018).

    [83] Z. M. Liu et al. Fabrication of an optical waveguide-mode-field compressor in glass using a femtosecond laser. Materials, 11, 1926(2018).

    [84] M. Sakakura et al. Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse. J. Appl. Phys., 109, 023503(2011).

    [85] V. R. Bhardwaj et al. Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett., 29, 1312-1314(2004).

    [86] A. Arriola et al. Low bend loss waveguides enable compact, efficient 3D photonic chips. Opt. Express, 21, 2978-2986(2013).

    [87] O. S. Narayanaswamy. Annealing of glass. Glass Sci. Technol., 3, 275-318(1986).

    [88] H. E. Hagy. Fine annealing of optical glass for low residual stress and refractive index homogeneity. Appl. Opt., 7, 833-835(1968).

    [89] N. Ollier et al. Relaxation study of pre-densified silica glasses under 2.5 MeV electron irradiation. Sci. Rep., 9, 1227(2019).

    [90] J. J. Witcher et al. Thermal annealing of femtosecond laser written structures in silica glass. Opt. Mater. Express, 3, 502-510(2013).

    [91] B. H. Babu et al. Systematic control of optical features in aluminosilicate glass waveguides using direct femtosecond laser writing. Opt. Mater., 72, 501-507(2017).

    [92] P. Dekker et al. Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres. Opt. Express, 18, 3274-3283(2010).

    [93] J. D. Musgraves, K. Richardson, H. Jain. Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt. Mater. Express, 1, 921-935(2011).

    [94] X. W. Wang et al. Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass. Appl. Phys. A, 122, 194(2016). https://doi.org/10.1007/s00339-016-9647-0

    [95] T. T. Fernandez et al. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett., 38, 5248-5251(2013).

    [96] T. T. Fernandez et al. Revisiting ultrafast laser inscribed waveguide formation in commercial alkali-free borosilicate glasses. Opt. Express, 28, 10153-10164(2020).

    [97] P. Moreno-Zarate et al. Role of the La/K compositional ratio in the properties of waveguides written by fs-laser induced element redistribution in phosphate-based glasses. Materials, 13, 1275(2020).

    [98] T. T. Fernandez et al. Bespoke photonic devices using ultrafast laser driven ion migration in glasses. Prog. Mater. Sci., 94, 68-113(2018).

    [99] M. Macias-Montero et al. Waveguide tapers fabrication by femtosecond laser induced element redistribution in glass. J. Lightwave Technol., 38, 6578-6583(2020).

    [100] L. Bressel et al. Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect. Opt. Mater. Express, 1, 605-613(2011). https://doi.org/10.1364/OME.1.000605

    [101] J. M. Oliveira et al. Waveguides written in silver-doped tellurite glasses. Opt. Mater., 101, 109767(2020).

    [102] N. Riesen et al. Femtosecond direct-written integrated mode couplers. Opt. Express, 22, 29855-29861(2014).

    [103] Y. Duan et al. Time dependent study of femtosecond laser written waveguide lasers in Yb-doped silicate and phosphate glass. Opt. Mater. Express, 5, 416-422(2015).

    [104] K. Minoshima et al. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Express, 10, 645-652(2002).

    [105] K. Suzuki et al. Characterization of symmetric [3×3] directional couplers fabricated by direct writing with a femtosecond laser oscillator. Opt. Express, 14, 2335-2343(2006). https://doi.org/10.1364/OE.14.002335

    [106] S. Gross et al. Ultrafast laser-written sub-components for space division multiplexing(2020).

    [107] J. Lapointe et al. Making smart phones smarter with photonics. Opt. Express, 22, 15473-15483(2014).

    [108] R. Heilmann et al. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep., 4, 4118(2015).

    [109] L. A. Fernandes et al. Femtosecond laser fabrication of birefringent directional couplers as polarisation beam splitters in fused silica. Opt. Express, 19, 11992-11999(2011).

    [110] W. J. Yang et al. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express, 16, 16215-16226(2008).

    [111] I. Pitsios et al. Geometrically controlled polarisation processing in femtosecond-laser-written photonic circuits. Sci. Rep., 7, 11342(2017).

    [112] G. Corrielli et al. Rotated waveplates in integrated waveguide optics. Nat. Commun., 5, 4249(2014).

    [113] L. Sansoni et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett., 105, 200503(2010).

    [114] R. S. Luís et al. 1.2  Pb/s throughput transmission using a 160  μm cladding, 4-core, 3-mode fiber. J. Lightwave Technol., 37, 1798-1804(2019). https://doi.org/10.1109/JLT.2019.2902601

    [115] V. A. Amorim et al. Monolithic add–drop multiplexers in fused silica fabricated by femtosecond laser direct writing. J. Lightwave Technol., 35, 3615-3621(2017).

    [116] I. V. Dyakonov et al. Laser-written polarizing directional coupler with reduced interaction length. Opt. Lett., 42, 4231-4234(2017).

    [117] T. Mizuno et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J. Lightwave Technol., 34, 582-592(2016).

    [118] N. Riesen et al. Monolithic mode-selective few-mode multicore fiber multiplexers. Sci. Rep., 7, 6971(2017).

    [119] B. Guan et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express, 22, 145-156(2014).

    [120] G. Djogo et al. Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extreme. Manuf., 1, 045002(2019).

    [121] R. R. Thomson et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express, 15, 11691-11697(2007).

    [122] M. Mirshafiei et al. Glass interposer for short reach optical connectivity. Opt. Express, 24, 12375-12384(2016).

    [123] C. Mikael et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [124] N. Spagnolo. Experimental validation of photonic boson sampling. Nat. Photonics, 8, 615-620(2014).

    [125] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [126] M. Kim, Z. Jacob, J. Rho. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl., 9, 130(2020).

    [127] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [128] M. Kremer et al. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages. Nat. Commun., 11, 907(2020).

    [129] L. J. Maczewsky et al. Fermionic time-reversal symmetry in a photonic topological insulator. Nat. Mater., 19, 855-860(2020).

    [130] S. Weimann et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater., 16, 433-438(2017).

    [131] G. G. Pyrialakos et al. Symmetry-controlled edge states in the type-II phase of Dirac photonic lattices. Nat. Commun., 11, 2074(2020).

    [132] J. Noh et al. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett., 120, 063902(2018).

    [133] Z. J. Yang et al. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl., 9, 128(2020).

    [134] S. Mukherjee, M. C. Rechtsman. Observation of Floquet solitons in a topological bandgap. Science, 368, 856-859(2020).

    [135] O. Zilberberg et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 553, 59-62(2018).

    [136] J. Noh et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics, 12, 408-415(2018).

    [137] S. Stützer et al. Photonic topological Anderson insulators. Nature, 560, 461-465(2018).

    [138] E. Lustig et al. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [139] Y. Lumer et al. Light guiding by artificial gauge fields. Nat. Photonics, 13, 339-345(2019).

    [140] A. E. Hassan et al. Corner states of light in photonic waveguides. Nat. Photonics, 13, 697-700(2019).

    [141] Y. Wang et al. Quantum topological boundary states in quasi-crystals. Adv. Mater., 31, 1905624(2019).

    [142] J. W. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [143] D. J. Brod et al. Photonic implementation of boson sampling: a review. Adv. Photonics, 1, 034001(2019).

    [144] N. Spagnolo et al. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun., 4, 1606(2013).

    [145] T. Giordani et al. Experimental statistical signature of many-body quantum interference. Nat. Photonics, 12, 173-178(2018).

    [146] A. Crespi et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics, 7, 322-328(2013).

    [147] J. L. Tambasco et al. Quantum interference of topological states of light. Sci. Adv., 4, eaat3187(2018).

    [148] C. Antón et al. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica, 6, 1471-1477(2019).

    [149] H. Tang et al. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics, 12, 754-758(2018).

    [150] X. Y. Xu et al. A scalable photonic computer solving the subset sum problem. Sci. Adv., 6, eaay5853(2020).

    [151] H. Tang et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv., 4, eaat3174(2018).

    [152] Z. Y. Shi et al. Quantum fast hitting on glued trees mapped on a photonic chip. Optica, 7, 613-618(2020).

    [153] Y. Wang et al. Topologically protected quantum entanglement(2019).

    [154] J. Noh et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys., 13, 611-617(2017).

    [155] A. Cerjan et al. Experimental realization of a Weyl exceptional ring. Nat. Photonics, 13, 623-628(2019).

    [156] A. Crespi et al. Suppression law of quantum states in a 3D photonic fast Fourier transform chip. Nat. Commun., 7, 10469(2016).

    [157] A. Saviauk et al. 3D-integrated optics component for astronomical spectro-interferometry. Appl. Opt., 52, 4556-4565(2013).

    [158] D. G. MacLachlan et al. Development of integrated mode reformatting components for diffraction-limited spectroscopy. Opt. Lett., 41, 76-79(2016).

    [159] R. J. Harris et al. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy. Mon. Not. R. Astron. Soc., 450, 428-434(2015).

    [160] N. Cvetojevic et al. Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph. Opt. Express, 25, 25546-25565(2017).

    [161] R. Diener et al. Towards 3D-photonic, multi-telescope beam combiners for midinfrared astrointerferometry. Opt. Express, 25, 19262-19274(2017).

    [162] T. Gretzinger et al. Towards a photonic mid-infrared nulling interferometer in chalcogenide glass. Opt. Express, 27, 8626-8638(2019).

    [163] J. Tepper et al. Ultrafast laser inscription in ZBLAN integrated optics chips for mid-IR beam combination in astronomical interferometry. Opt. Express, 25, 20642-20653(2017).

    [164] A. Arriola et al. Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials. Opt. Mater. Express, 7, 698-711(2017).

    [165] N. Jovanovic et al. Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide. Opt. Express, 20, 17029-17043(2012).

    [166] J. Tepper et al. Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands. Astron. Astrophys., 602, A66(2017).

    [167] N. Psaila. 3D laser direct writing for advanced photonic integration. Proc. SPIE, 10924, 109240U(2019).

    [168] F. Ceccarelli et al. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. Laser Photonics Rev., 14, 2000024(2020).

    [169] E. Perez et al. Automated on-axis direct laser writing of coupling elements for photonic chips. Opt. Express, 28, 39340-39353(2020).

    [170] F. Ceccarelli et al. Thermal phase shifters for femtosecond laser written photonic integrated circuits. J. Lightwave Technol., 37, 4275-4281(2019).

    [171] Y. Chen et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 121, 233602(2018).

    [172] Y. Chen et al. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).

    CLP Journals

    [1] Hua Zhong, Shiqi Xia, Yiqi Zhang, Yongdong Li, Daohong Song, Chunliang Liu, Zhigang Chen. Nonlinear topological valley Hall edge states arising from type-II Dirac cones[J]. Advanced Photonics, 2021, 3(5): 056001

    [2] Feng Chen. 3D direct writing of bandgap tunable nanocrystals in transparent material[J]. Advanced Photonics, 2022, 4(1): 010502

    [3] Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002

    [4] Jie Zhang, Dezhi Tan, Kaiqiang Cao, Tianqing Jia, Jianrong Qiu. Large area patterning of ultra-high thermal-stable structural colors in transparent solids[J]. Chinese Optics Letters, 2022, 20(3): 030501

    [5] Yuying Wang, Lijing Zhong, Zhi Chen, Dezhi Tan, Zaijin Fang, Yi Yang, Shengzhi Sun, Lüyun Yang, Jianrong Qiu. Photonic lattice-like waveguides in glass directly written by femtosecond laser for on-chip mode conversion[J]. Chinese Optics Letters, 2022, 20(3): 031406

    Dezhi Tan, Zhuo Wang, Beibei Xu, Jianrong Qiu. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 2021, 3(2): 024002
    Download Citation