[9] Mannava S R, Risbeck J D, Jacobs L G. Distortion control for laser shock peened gas turbine engine compressor blade edges: US5531570A[P]. 1996-07-02
[14] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Mater Sci Eng A, 1996, 210(1–2): 102–113. doi: 10.1016/0921-5093(95)10084-9.
[16] Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear, 2006, 260(7–8): 847–854. doi: 10.1016/j.wear.2005.04.014.
[18] Graham M E, Jackson J D. Dual laser shock peening: 6479790[P]. 2002-11-12.
[19] Mannava S, Wright III P K, Azad F H, et al. Single sided laser shock peening: 6559415[P]. 2003-05-06.
[28] Ouyang P X, He L J, Li P J, et al. Effect of dual-sided laser peening modes on residual stress distribution of aero-engine titanium blades[M]//Han Y F. Advances in Materials Processing. Singapore: Springer, 2017: 29–45.https://doi.org/10.1007/978-981-13-0107-0_4.
[31] Nam T. Finite element analysis of residual stress field induced by laser shock peening[D]. Columbus: The Ohio State University, 2002.
[43] Nie X, Li Y, He W, et al. Optimization and fracture mechanism analysis of TC17 titanium alloy simulated-blade with two-sided laser shock processing[M]//Ye L. Recent Advances in Structural Integrity Analysis-Proceedings of the International Congress. Amsterdam: Elsevier, 2014: 2–6.https://doi.org/10.1533/9780081002254.2.