• Journal of Semiconductors
  • Vol. 40, Issue 8, 081509 (2019)
Baoxing Zhai1, Juan Du2, Xueping Li3, Congxin Xia1, and Zhongming Wei4
Author Affiliations
  • 1Department of Physics, Henan Normal University, Xinxiang 453007, China
  • 2State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 3College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China
  • 4Institutes of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081509 Cite this Article
    Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study[J]. Journal of Semiconductors, 2019, 40(8): 081509 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] N D Mermin, H Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 17, 1133(1966).

    [3] H Zheng, B Yang, D Wang et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett, 104, 132403(2014).

    [4] A Hashmi, J Hong. Transition metal doped phosphorene: first-principles study. J Phys Chem C, 119, 9198(2015).

    [5] J Du, C Xia, Y An et al. Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J Mater Sci, 51, 9504(2016).

    [6] O V Yazyev, L Helm. Defect-induced magnetism in graphene. Phys Rev B, 75, 125408(2007).

    [7] R R Nair, M Sepioni, I L Tsai et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 8, 199(2012).

    [8] B Huang, G Clark, E Navarro-Moratalla et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546, 270(2017).

    [9] C Gong, L Li, Z Li et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546, 265(2017).

    [10] T Song, X Cai, M W Y Tu et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 360, 1214(2018).

    [11] K L Seyler, D Zhong, D R Klein et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat Phys, 14, 277(2018).

    [12] C Cardoso, D Soriano, N A García-Martínez et al. Van der Waals spin valves. Phys Rev Lett, 121, 067701(2018).

    [13] S Jiang, J Shan, K F Mak. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 17, 406(2018).

    [14] S Jiang, L Li, Z Wang et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 13, 549(2018).

    [15] G T Lin, X Luo, F C Chen et al. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl Phys Lett, 112, 072405(2018).

    [16] C Xu, J Feng, H Xiang et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 4, 57(2018).

    [17] K Wang, T Hu, F Jia et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 114, 092405(2019).

    [18] Y Deng, Y Yu, Y Song et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563, 94(2018).

    [19] M Bonilla, S Kolekar, Y Ma et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 13, 289(2018).

    [20] D J O’Hara, T Zhu, A H Trout et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 18, 3125(2018).

    [21] S Zheng, C Huang, T Yu et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 10, 2733(2019).

    [22] S Tian, J-F Zhang, C Li et al. Ferromagnetic van der Waals crystal VI3. J Am Chem Soc, 141, 5326(2019).

    [23] A K Geim, I V Grigorieva. Van der Waals heterostructures. Nature, 499, 419(2013).

    [24] S Yao, E Wang, S Zhou. Van der Waals heterostructures, a new world in the field of two-dimensional materials. Physics, 5, 322(2017).

    [25] D Unuchek, A Ciarrocchi, A Avsar et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 560, 340(2018).

    [26] K L Seyler, P Rivera, H Yu et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 567, 66(2019).

    [27] C Jin, E C Regan, A Yan et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 567, 76(2019).

    [28] C Xia, W Xiong, J Du et al. Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects. Small, 14, 1800365(2018).

    [29] C Xia, J Du, M Li et al. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys Rev Appl, 10, 054064(2018).

    [30] J Qi, X Li, Q Niu et al. Giant and tunable valley degeneracy splitting in MoTe2. Phys Rev B, 92, 121403(2015).

    [31] X Liang, L Deng, F Huang et al. The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions. Nanoscale, 9, 9502(2017).

    [32] L Xu, M Yang, L Shen et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys Rev B, 97, 041405(2018).

    [33] P Jiang, L Li, Z Liao et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 18, 3844(2018).

    [34] Y Jin, R Wang, H Xu. Recipe for Dirac phonon states with a quantized valley berry phase in two-dimensional hexagonal lattices. Nano Lett, 18, 7755(2018).

    [35] Y Zhao, L Lin, Q Zhou et al. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides. Nano Lett, 18, 2943(2018).

    [36] H Wang, F Fan, S Zhu et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL Europhys Lett, 114, 47001(2016).

    [37] S J Gong, C Gong, Y Y Sun et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci, 115, 8511(2018).

    [38] L Webster, J A Yan. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 98, 144411(2018).

    [39] S Haastrup, M Strange, M Pandey et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater, 5, 042002(2018).

    [40] N Mounet, M Gibertini, P Schwaller et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 13, 246(2018).

    [41] Y Zhu, X Kong, T D Rhone et al. Systematic search for two-dimensional ferromagnetic materials. Phys Rev Mater, 2, 081001(2018).

    [42] N Miao, B Xu, L Zhu et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 140, 2417(2018).

    [43]

    [44] Z Jiang, P Wang, J Xing et al. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl Mater Interfaces, 10, 39032(2018).

    [45] C Huang, J Feng, F Wu et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 140, 11519(2018).

    [46] X Li, J Yang. Realizing two-dimensional magnetic semiconductors with enhanced Curie temperature by antiaromatic ring based organometallic frameworks. J Am Chem Soc, 141, 109(2019).

    [47] W Xiong, C Xia, J Du et al. Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH)2/VS2 heterobilayer. Phys Rev B, 95, 245408(2017).

    [48] J Du, C Xia, W Xiong et al. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale, 9, 17585(2017).

    [49] Z Zhang, X Ni, H Huang et al. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Phys Rev B, 99, 115441(2019).

    [50] M U Farooq, J Hong. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. npj 2D Mater Appl, 3, 3(2019).

    [51] J Zhang, B Zhao, T Zhou et al. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys Rev B, 97, 085401(2018).

    [52] H Zhang, W Qin, M Chen et al. Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Phys Rev B, 99, 165410(2019).

    [53] C Gong, X Zhang. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 363, 706(2019).

    [54] K F Mak, K L McGill, J Park et al. The valley Hall effect in MoS2 transistors. Science, 344, 1489(2014).

    [55] K L Seyler, D Zhong, B Huang et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 18, 3823(2018).

    [56] G Aivazian, Z Gong, A M Jones et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys, 11, 148(2015).

    [57] R Peng, Y Ma, S Zhang et al. Valley polarization in janus single-layer MoSSe via magnetic doping. J Phys Chem Lett, 9, 3612(2018).

    [58] Q Pei, B Zhou, W Mi et al. Triferroic material and electrical control of valley degree of freedom. ACS Appl Mater Interfaces, 11, 12675(2019).

    [59] W Sun, W Wang, D Chen et al. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale, 11, 9931(2019).

    Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study[J]. Journal of Semiconductors, 2019, 40(8): 081509
    Download Citation