• Advanced Photonics
  • Vol. 4, Issue 3, 035001 (2022)
Ya Guo1、2、3、†, Qiang Cai1, Pu Li1、2、*, Ruonan Zhang3, Bingjie Xu4, K. Alan Shore5, and Yuncai Wang2
Author Affiliations
  • 1Taiyuan University of Technology, Key Laboratory of Advanced Transducers and Intelligent Control Systems, Ministry of Education, Taiyuan, China
  • 2Guangdong University of Technology, School of Information Engineering, Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou, China
  • 3Northwestern Polytechnical University, School of Electronics and Information, Xi’an, China
  • 4Institute of Southwestern Communication, Science and Technology on Communication Laboratory, Chengdu, China
  • 5Bangor University, School of Electronic Engineering, Wales, United Kingdom
  • show less
    DOI: 10.1117/1.AP.4.3.035001 Cite this Article Set citation alerts
    Ya Guo, Qiang Cai, Pu Li, Ruonan Zhang, Bingjie Xu, K. Alan Shore, Yuncai Wang. Ultrafast and real-time physical random bit extraction with all-optical quantization[J]. Advanced Photonics, 2022, 4(3): 035001 Copy Citation Text show less
    References

    [1] C. E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28, 656-715(1949).

    [2] R. G. Gallager. Principles of Digital Communication(2008).

    [3] S. Asmussen, P. W. Glynn. Stochastic Simulation: Algorithms and Analysis(2007).

    [4] D. R. Stinson. Cryptography: Theory and Practice(1995).

    [5] A. Uchida et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics, 2, 728-732(2008).

    [6] I. Reidler et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, 024102(2009).

    [7] I. Kanter et al. An optical ultrafast random bit generator. Nat. Photonics, 4, 58-61(2010).

    [8] K. Hirano et al. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express, 18, 5512-5524(2010).

    [9] Y. Akizawa et al. Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at 8 × 50 Gb/s. IEEE Photonics Technol. Lett., 24, 1042-1044(2012).

    [10] R. Sakuraba et al. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express, 23, 1470-1490(2015).

    [11] L. M. Zhang et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep., 7, 45900(2017).

    [12] A. B. Wang et al. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos. Opt. Express, 25, 3153-3164(2017).

    [13] N. Q. Li et al. Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser. Opt. Express, 22, 6634-6646(2014).

    [14] T. Butler et al. Optical ultrafast random number generation at in one line using a turbulent semiconductor ring cavity laser. Opt. Lett., 41, 388-391(2016).

    [15] X. Tang et al. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express, 23, 33130-33141(2015).

    [16] A. Argyris et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt. Express, 18, 18763-18768(2010).

    [17] P. Li et al. Real-time online photonic random number generation. Opt. Lett., 42, 2699-2702(2017).

    [18] K. Kim et al. Massively parallel ultrafast random bit generation with a chip-scale laser. Science, 371, 948-952(2021).

    [19] K. Ugajin et al. Real-time fast physical random number generator with a photonic integrated circuit. Opt. Express, 25, 6511-6523(2017).

    [20] A. B. Wang et al. Optical heterodyne generation of high-dimensional and broadband white chaos. IEEE J. Sel. Top. Quantum Electron, 21, 531-540(2015).

    [21] K. Yoshiya et al. Entropy evaluation of white chaos generated by optical heterodyne for certifying physical random number generators. Opt. Express, 28, 3686-3698(2020).

    [22] Random bit generation.

    [23] I. W. Hsieh et al. Supercontinuum generation in silicon photonic wires. Opt. Express, 15, 15242-15249(2007).

    [24] X. Kang et al. Integratable all-optical spectral quantization scheme based on chalcogenide-silicon slot waveguide. Opt. Commun., 355, 479-484(2015).

    [25] R. Halir et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett., 37, 1685-1687(2012).

    [26] S. Nakamura, Y. Ueno, K. Tajima. Error-free all-optical demultiplexing at 336 GB/s with a hybrid-integrated symmetric-Mach-Zehnder switch(2002).

    Ya Guo, Qiang Cai, Pu Li, Ruonan Zhang, Bingjie Xu, K. Alan Shore, Yuncai Wang. Ultrafast and real-time physical random bit extraction with all-optical quantization[J]. Advanced Photonics, 2022, 4(3): 035001
    Download Citation