• Photonics Insights
  • Vol. 1, Issue 1, R04 (2022)
Sanjib Ghosh1, Rui Su2、*, Jiaxin Zhao2, Antonio Fieramosca2, Jinqi Wu2, Tengfei Li1, Qing Zhang3、4, Feng Li5, Zhanghai Chen6, Timothy Liew2, Daniele Sanvitto7, and Qihua Xiong1、8、9、10、*
Author Affiliations
  • 1Beijing Academy of Quantum Information Sciences, Beijing, China
  • 2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
  • 3School of Materials Science and Engineering, Peking University, Beijing, China
  • 4Research Center for Wide Gap Semiconductor, Peking University, Beijing, China
  • 5Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
  • 6Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, China
  • 7CNR NANOTEC, Campus Ecotekne, Lecce, Italy
  • 8State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
  • 9Frontier Science Center for Quantum Information, Beijing, China
  • 10Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China
  • show less
    DOI: 10.3788/PI.2022.R04 Cite this Article Set citation alerts
    Sanjib Ghosh, Rui Su, Jiaxin Zhao, Antonio Fieramosca, Jinqi Wu, Tengfei Li, Qing Zhang, Feng Li, Zhanghai Chen, Timothy Liew, Daniele Sanvitto, Qihua Xiong. Microcavity exciton polaritons at room temperature[J]. Photonics Insights, 2022, 1(1): R04 Copy Citation Text show less
    References

    [1] H. Deng, H. Haug, Y. Yamamoto. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys., 82, 1489(2010).

    [2] D. Sanvitto, S. Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 15, 1061(2016).

    [3] R. Su et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater., 20, 1315(2021).

    [4] J. Kasprzak et al. Bose–Einstein condensation of exciton polaritons. Nature, 443, 409(2006).

    [5] A. Amo et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys., 5, 805(2009).

    [6] G. Lerario et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys., 13, 837(2017).

    [7] K. G. Lagoudakis et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys., 4, 706(2008).

    [8] C. Schneider et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys., 80, 016503(2016).

    [9] T. Gao et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526, 554(2015).

    [10] R. Su et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. Sci. Adv., 7, eabj8905(2021).

    [11] H. Deng et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl. Acad. Sci. U.S.A., 100, 15318(2003).

    [12] C. Schneider et al. An electrically pumped polariton laser. Nature, 497, 348(2013).

    [13] A. Amo et al. Exciton–polariton spin switches. Nat. Photonics, 4, 361(2010).

    [14] D. Ballarini et al. All-optical polariton transistor. Nat. Commun., 4, 1778(2013).

    [15] A. V. Zasedatelev et al. A room-temperature organic polariton transistor. Nat. Photonics, 13, 378(2019).

    [16] T. C. H. Liew, A. V. Kavokin, I. A. Shelykh. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett., 101, 016402(2008).

    [17] A. Delteil et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater., 18, 219(2019).

    [18] G. Muñoz-Matutano et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater., 18, 213(2019).

    [19] M. A. Nielsen, I. Chuang. Quantum Computation and Quantum Information(2010).

    [20] J. J. Hopfield. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev., 112, 1555(1958).

    [21] C. Weisbuch et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314(1992).

    [22] M. Saba et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature, 414, 731(2001).

    [23] P. G. Savvidis et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett., 84, 1547(2000).

    [24] A. I. Tartakovskii, D. N. Krizhanovskii, V. D. Kulakovskii. Polariton-polariton scattering in semiconductor microcavities: distinctive features and similarities to the three-dimensional case. Phys. Rev. B, 62, R13298(2000).

    [25] R. M. Stevenson et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett., 85, 3680(2000).

    [26] J. J. Baumberg et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B, 62, R16247(2000).

    [27] E. Wertz et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys., 6, 860(2010).

    [28] D. Krizhanovskii et al. Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B, 80, 045317(2009).

    [29] L. Zhang et al. Weak lasing in one-dimensional polariton superlattices. Proc. Natl. Acad. Sci. U.S.A., 112, E1516(2015).

    [30] T.-C. Lu et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express, 20, 5530(2012).

    [31] S. Christopoulos et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett., 98, 126405(2007).

    [32] D. G. Lidzey et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature, 395, 53(1998).

    [33] S. Kéna-Cohen, S. R. Forrest. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics, 4, 371(2010).

    [34] K. Daskalakis et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater., 13, 271(2014).

    [35] R. Su et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 17, 3982(2017).

    [36] R. Su et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv., 4, eaau0244(2018).

    [37] X. Liu et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics, 9, 30(2015).

    [38] A. Graf et al. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nat. Commun., 7, 13078(2016).

    [39] A. Graf et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater., 16, 911(2017).

    [40] W. Gao et al. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nat. Photonics, 12, 362(2018).

    [41] A. V. Kavokin et al. Microcavities(2017).

    [42] I. Carusotto, C. Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85, 299(2013).

    [43] H. Benisty et al. Confined Photon Systems: Fundamentals and Applications(1999).

    [44] A. Lahiri, P. B. Pall. A First Book of Quantum Field Theory(2005).

    [45] G. D. Mahan. Many-Particle Physics(2013).

    [46] R. Bennett, T. M. Barlow, A. Beige. A physically motivated quantization of the electromagnetic field. Eur. J. Phys., 37, 014001(2015).

    [47] R. Su et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys., 16, 301(2020).

    [48] C. Ciuti et al. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B, 58, 7926(1998).

    [49] F. Tassone, Y. Yamamoto. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B, 59, 10830(1999).

    [50] M. Combescot, S.-Y. Shiau. Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics(2015).

    [51] I. A. Shelykh et al. Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol., 25, 013001(2009).

    [52] V. Timofeev, D. Sanvitto. Exciton Polaritons in Microcavities(2012).

    [53] A. Rahimi-Iman. Polariton Physics: From Dynamic Bose–Einstein Condensates in Strongly-Coupled Light–Matter Systems to Polariton Lasers(2020).

    [54] H. Hu, H. Deng, X.-J. Liu. Polariton-polariton interaction beyond the Born approximation: a toy model study. Phys. Rev. A, 102, 063305(2020).

    [55] C. Lai et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature, 450, 529(2007).

    [56] S. Utsunomiya et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nat. Phys., 4, 700(2008).

    [57] N. Y. Kim et al. Exciton–polariton condensates near the Dirac point in a triangular lattice. New J. Phys., 15, 035032(2013).

    [58] H. Ohadi et al. Spin order and phase transitions in chains of polariton condensates. Phys. Rev. Lett., 119, 067401(2017).

    [59] R. I. Kaitouni et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B, 74, 155311(2006).

    [60] S. Michaelis de Vasconcellos et al. Spatial, spectral, and polarization properties of coupled micropillar cavities. Appl. Phys. Lett., 99, 101103(2011).

    [61] J. B. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 10, 2(2015).

    [62] K.-D. Park et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci. Adv., 5, eaav5931(2019).

    [63] Y. M. Qing et al. Strong coupling in two-dimensional materials-based nanostructures: a review. J. Opt., 24, 024009(2022).

    [64] J. Qin et al. Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions. Phys. Rev. Lett., 124, 063902(2020).

    [65] G. Zengin et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).

    [66] T. W. Lo et al. Thermal redistribution of exciton population in monolayer transition metal dichalcogenides probed with plasmon–exciton coupling spectroscopy. ACS Photonics, 6, 411(2019).

    [67] J. Wen et al. Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett., 17, 4689(2017).

    [68] D. Zheng et al. Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett., 17, 3809(2017).

    [69] X. Han et al. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics, 5, 3970(2018).

    [70] B. Munkhbat et al. Electrical control of hybrid monolayer tungsten disulfide–plasmonic nanoantenna light–matter states at cryogenic and room temperatures. ACS Nano, 14, 1196(2020).

    [71] R. K. Yadav et al. Room temperature weak-to-strong coupling and the emergence of collective emission from quantum dots coupled to plasmonic arrays. ACS Nano, 14, 7347(2020).

    [72] M. Ramezani et al. Plasmon-exciton-polariton lasing. Optica, 4, 31(2017).

    [73] K. Santhosh et al. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, ncomms11823(2016).

    [74] O. Bitton et al. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun., 11, 487(2020).

    [75] M.-E. Kleemann et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 8, 1296(2017).

    [76] T. W. Lo et al. Plasmonic nanocavity induced coupling and boost of dark excitons in monolayer WSe2 at room temperature. Nano Lett., 22, 1915(2022).

    [77] J. J. Baumberg et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668(2019).

    [78] R. Chikkaraddy et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127(2016).

    [79] B. Wang et al. High-Q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater., 9, 2001520(2021).

    [80] W. Liu et al. Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett., 16, 1262(2016).

    [81] S. Wang et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett., 16, 4368(2016).

    [82] A. Bisht et al. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett., 19, 189(2018).

    [83] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-1965), 20, 454(1961).

    [84] L. P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13, 451(1961).

    [85] L. Pitaevskii, S. Stringari. Bose-Einstein Condensation and Superfluidity(2003).

    [86] M. Wouters, I. Carusotto. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett., 99, 140402(2007).

    [87] M. Pieczarka et al. Topological phase transition in an all-optical exciton-polariton lattice. Optica, 8, 1084(2021).

    [88] J. Keeling, N. G. Berloff. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett., 100, 250401(2008).

    [89] T. C. H. Liew et al. Kinetic Monte Carlo approach to nonequilibrium bosonic systems. Phys. Rev. B, 96, 125423(2017).

    [90] C. Piermarocchi et al. Nonequilibrium dynamics of free quantum-well excitons in time-resolved photoluminescence. Phys. Rev. B, 53, 15834(1996).

    [91] D. Porras et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities. Phys. Rev. B, 66, 085304(2002).

    [92] K. B. Davis et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969(1995).

    [93] M. H. Anderson et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198(1995).

    [94] M. Andrews et al. Observation of interference between two Bose condensates. Science, 275, 637(1997).

    [95] T. Byrnes, N. Y. Kim, Y. Yamamoto. Exciton–polariton condensates. Nat. Phys., 10, 803(2014).

    [96] Y. Sun et al. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett., 118, 016602(2017).

    [97] A. Baas et al. Optical bistability in semiconductor microcavities. Phys. Rev. A, 69, 023809(2004).

    [98] D. Whittaker. Effects of polariton-energy renormalization in the microcavity optical parametric oscillator. Phys. Rev. B, 71, 115301(2005).

    [99] J. Wu et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett., 21, 3120(2021).

    [100] J. Wu et al. Perovskite polariton parametric oscillator. Adv. Photonics, 3, 055003(2021).

    [101] K. G. Lagoudakis et al. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett., 106, 115301(2011).

    [102] J. M. Kosterlitz, D. J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys., 6, 1181(1973).

    [103] J. V. Jos. 40 Years of Berezinskii-Kosterlitz-Thouless Theory(2013).

    [104] F. I. Moxley et al. Quantum technology applications of exciton-polariton condensates. Emergent Mater., 4, 971(2021).

    [105] J. L. O’brien, A. Furusawa, J. Vučković. Photonic quantum technologies. Nat. Photonics, 3, 687(2009).

    [106] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273(2020).

    [107] A. Verger, C. Ciuti, I. Carusotto. Polariton quantum blockade in a photonic dot. Phys. Rev. B, 73, 193306(2006).

    [108] T. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104, 183601(2010).

    [109] H. Flayac, V. Savona. Unconventional photon blockade. Phys. Rev. A, 96, 053810(2017).

    [110] M. Bamba et al. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 83, 021802(2011).

    [111] S. Ghosh, T. C. Liew. Dynamical blockade in a single-mode bosonic system. Phys. Rev. Lett., 123, 013602(2019).

    [112] D. Stefanatos, E. Paspalakis. Dynamical blockade in a bosonic Josephson junction using optimal coupling. Phys. Rev. A, 102, 013716(2020).

    [113] S. Ghosh, T. C. Liew. Quantum computing with exciton-polariton condensates. NPJ Quantum Inf., 6, 16(2020).

    [114] H. Wiseman, K. Burnett, M. Collett. An atom laser based on dark-state cooling: a detailed description. J. Phys. B, 32, 3669(1999).

    [115] M. Holland et al. Theory of an atom laser. Phys. Rev. A, 54, R1757(1996).

    [116] A. Imamog et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A, 53, 4250(1996).

    [117] M. Wei et al. Low threshold room temperature polariton lasing from fluorene-based oligomers. Laser Photonics Rev., 15, 2100028(2021).

    [118] R. Jayaprakash et al. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap. Sci. Rep., 7, 5542(2017).

    [119] M. Wei et al. Low-threshold polariton lasing in a highly disordered conjugated polymer. Optica, 6, 1124(2019).

    [120] J. Zhao et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett., 21, 3331(2021).

    [121] A. Rahimi-Iman. Polariton Physics(2020).

    [122] J. Kasprzak et al. Bose–Einstein condensation of exciton polaritons. Nature, 443, 409(2006).

    [123] I. Bloch, J. Dalibard, S. Nascimbene. Quantum simulations with ultracold quantum gases. Nat. Phys., 8, 267(2012).

    [124] D. G. Angelakis. Quantum Simulations with Photons and Polaritons, 134(2017).

    [125] R. Banerjee, S. Mandal, T. Liew. Coupling between exciton-polariton corner modes through edge states. Phys. Rev. Lett., 124, 063901(2020).

    [126] R. Banerjee, T. C. H. Liew, O. Kyriienko. Realization of Hofstadter’s butterfly and a one-way edge mode in a polaritonic system. Phys. Rev. B, 98, 075412(2018).

    [127] X. Xu et al. Interaction-induced double-sided skin effect in an exciton-polariton system. Phys. Rev. B, 103, 235306(2021).

    [128] H. Xu et al. Nonreciprocal exciton-polariton ring lattices. Phys. Rev. B, 104, 195301(2021).

    [129] S. Mandal et al. Nonreciprocal transport of exciton polaritons in a non-Hermitian chain. Phys. Rev. Lett., 125, 123902(2020).

    [130] S. Klembt et al. Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice. Appl. Phys. Lett., 111, 231102(2017).

    [131] F. Scafirimuto et al. Tunable exciton–polariton condensation in a two-dimensional Lieb lattice at room temperature. Commun. Phys., 4, 39(2021).

    [132] S. Mandal, R. Ge, T. C. H. Liew. Antichiral edge states in an exciton polariton strip. Phys. Rev. B, 99, 115423(2019).

    [133] H. Sigurdsson et al. Spontaneous topological transitions in a honeycomb lattice of exciton-polariton condensates due to spin bifurcations. Phys. Rev. B, 100, 235444(2019).

    [134] S. Klembt et al. Exciton-polariton topological insulator. Nature, 562, 552(2018).

    [135] R. Su et al. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv., 7, eabf8049(2021).

    [136] J. Dalibard et al. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 83, 1523(2011).

    [137] H.-T. Lim et al. Electrically tunable artificial gauge potential for polaritons. Nat. Commun., 8, 14540(2017).

    [138] V. Kozin et al. Anomalous exciton hall effect. Phys. Rev. Lett., 126, 036801(2021).

    [139] A. Zamora et al. Kibble-Zurek mechanism in driven dissipative systems crossing a nonequilibrium phase transition. Phys. Rev. Lett., 125, 095301(2020).

    [140] D. Solnyshkov, H. Flayac, G. Malpuech. Black holes and wormholes in spinor polariton condensates. Phys. Rev. B, 84, 233405(2011).

    [141] D. D. Nolte. Mind at Light Speed: A New Kind of Intelligence(2001).

    [142] J. Feng et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv., 7, eabj6627(2021).

    [143] X. Ma, S. Schumacher. Vortex-vortex control in exciton-polariton condensates. Phys. Rev. B, 95, 235301(2017).

    [144] R. Cerna et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun., 4, 2008(2013).

    [145] H. S. Nguyen et al. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett., 110, 236601(2013).

    [146] T. Espinosa-Ortega, T. C. H. Liew, I. A. Shelykh. Optical diode based on exciton-polaritons. Appl. Phys. Lett., 103, 191110(2013).

    [147] H. Flayac, I. Savenko. An exciton-polariton mediated all-optical router. Appl. Phys. Lett., 103, 201105(2013).

    [148] F. Marsault et al. Realization of an all optical exciton-polariton router. Appl. Phys. Lett., 107, 201115(2015).

    [149] M. Klaas et al. Counter-directional polariton coupler. Appl. Phys. Lett., 114, 061102(2019).

    [150] E. Wertz et al. Propagation and amplification dynamics of 1D polariton condensates. Phys. Rev. Lett., 109, 216404(2012).

    [151] T. Espinosa-Ortega, T. C. H. Liew. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B, 87, 195305(2013).

    [152] N. G. Berloff et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater., 16, 1120(2017).

    [153] P. G. Lagoudakis, N. G. Berloff. A polariton graph simulator. New J. Phys., 19, 125008(2017).

    [154] K. P. Kalinin, N. G. Berloff. Global optimization of spin Hamiltonians with gain-dissipative systems. Sci. Rep., 8, 17791(2018).

    [155] O. Kyriienko, H. Sigurdsson, T. C. H. Liew. Probabilistic solving of N P-hard problems with bistable nonlinear optical networks. Phys. Rev. B, 99, 195301(2019).

    [156] R. Banerjee, T. C. H. Liew. Artificial life in an exciton-polariton lattice. New J. Phys., 22, 103062(2020).

    [157] T. Byrnes et al. Neural networks using two-component Bose-Einstein condensates. Sci. Rep., 3, 2531(2013).

    [158] T. Espinosa-Ortega, T. Liew. Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials. Phys. Rev. Lett., 114, 118101(2015).

    [159] A. Opala et al. Neuromorphic computing in Ginzburg-Landau polariton-lattice systems. Phys. Rev. Appl., 11, 064029(2019).

    [160] G. Tanaka et al. Recent advances in physical reservoir computing: a review. Neural Netw., 115, 100(2019).

    [161] D. Ballarini et al. Polaritonic neuromorphic computing outperforms linear classifiers. Nano Lett., 20, 3506(2020).

    [162] R. Mirek et al. Neuromorphic binarized polariton networks. Nano Lett., 21, 3715(2021).

    [163] H. Xu et al. Universal self-correcting computing with disordered exciton-polariton neural networks. Phys. Rev. Appl., 13, 064074(2020).

    [164] T. H. Johnson, S. R. Clark, D. Jaksch. What is a quantum simulator?. EPJ Quantum Technology, 1, 10(2014).

    [165] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21, 467(1982).

    [166] K. M. Birnbaum et al. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87(2005).

    [167] F. Bonechi et al. Heisenberg XXZ model and quantum Galilei group. J. Phys. A, 25, L939(1992).

    [168] S. Ghosh, T. C. H. Liew. Quantum computing with exciton-polariton condensates. NPJ Quantum Inf., 6, 16(2020).

    [169] Y. Xue et al. Split-ring polariton condensates as macroscopic two-level quantum systems. Phys. Rev. Res., 3, 013099(2021).

    [170] D. Nigro et al. Integrated quantum polariton interferometry. Commun. Phys., 5, 34(2022).

    [171] O. Kyriienko, T. C. H. Liew. Exciton-polariton quantum gates based on continuous variables. Phys. Rev. B, 93, 035301(2016).

    [172] T. Byrnes, K. Wen, Y. Yamamoto. Macroscopic quantum computation using Bose-Einstein condensates. Phys. Rev. A, 85, 040306(2012).

    [173] G. Christmann et al. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett., 93, 051102(2008).

    [174] A. Trichet et al. From strong to weak coupling regime in a single GaN microwire up to room temperature. New J. Phys., 14, 073004(2012).

    [175] K. S. Daskalakis et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater., 13, 271(2014).

    [176] J. D. Plumhof et al. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater., 13, 247(2014).

    [177] A. Fieramosca et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 5, eaav9967(2019).

    [178] S. Liu et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv., 5, eaav9445(2019).

    [179] G. Lanty et al. Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys., 10, 065007(2008).

    [180] A. Brehier et al. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett., 89, 171110(2006).

    [181] N. H. M. Dang et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett., 20, 2113(2020).

    [182] C. Symonds et al. Emission of hybrid organic-inorganic exciton/plasmon mixed states. Appl. Phys. Lett., 90, 091107(2007).

    [183] W. Niu et al. Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. Phys. Rev. B, 91, 161303(2015).

    [184] L. Polimeno et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 8, 2000176(2020).

    [185] P. Bouteyre et al. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photonics, 6, 1804(2019).

    [186] S. Zhang et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater., 6, 1701032(2018).

    [187] J. Wang et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light Sci. Appl., 10, 45(2021).

    [188] T. J. S. Evans et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 6, 1700982(2018).

    [189] Q. Zhang et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 26, 6238(2016).

    [190] J. C. Blancon et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 355, 1288(2017).

    [191] J. C. Blancon et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun., 9, 2254(2018).

    [192] L. Zhao et al. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res., 14, 1937(2021).

    [193] F. Barachati et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol., 13, 906(2018).

    [194] L. B. Tan et al. Interacting polaron-polaritons. Phys. Rev. X, 10, 021011(2020).

    [195] R. Emmanuele et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun., 11, 3589(2020).

    [196] J. Zhao et al. Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity. Nat. Nanotechnol., 17, 396(2022).

    [197] J. Maultzsch et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B, 72, 241402(2005).

    [198] X. Zhou et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett., 95, 146805(2005).

    [199] T. Someya et al. Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science, 285, 1905(1999).

    [200] N. Antoine-Vincent et al. Observation of Rabi splitting in a bulk GaN microcavity grown on silicon. Phys. Rev. B, 68, 153313(2003).

    [201] G. Malpuech et al. Room-temperature polariton lasers based on GaN microcavities. Appl. Phys. Lett., 81, 412(2002).

    [202] T. Tawara et al. Cavity polaritons in InGaN microcavities at room temperature. Phys. Rev. Lett., 92, 256402(2004).

    [203] F. Semond et al. Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon. Appl. Phys. Lett., 87, 021102(2005).

    [204] R. Butté et al. Room-temperature polariton luminescence from a bulk GaN microcavity. Phys. Rev. B, 73, 033315(2006).

    [205] Y.-K. Song et al. Resonant-cavity InGaN quantum-well blue light-emitting diodes. Appl. Phys. Lett., 77, 1744(2000).

    [206] A. Das et al. Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett., 107, 066405(2011).

    [207] J. Heo et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity. Nano Lett., 13, 2376(2013).

    [208] K. Daskalakis et al. All-dielectric GaN microcavity: strong coupling and lasing at room temperature. Appl. Phys. Lett., 102, 101113(2013).

    [209] P. Bhattacharya et al. Solid state electrically injected exciton-polariton laser. Phys. Rev. Lett., 110, 206403(2013).

    [210] P. Bhattacharya et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett., 112, 236802(2014).

    [211] M. Zamfirescu et al. ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Phys. Rev. B, 65, 161205(2002).

    [212] S. Chichibu et al. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. J. Appl. Phys., 93, 756(2003).

    [213] S. Chichibu et al. Photoreflectance spectra of a ZnO heteroepitaxial film on the nearly lattice-matched ScAlMgO4 (0001) substrate grown by laser molecular-beam epitaxy. Appl. Phys. Lett., 80, 2860(2002).

    [214] L. K. van Vugt et al. Exciton polaritons confined in a ZnO nanowire cavity. Phys. Rev. Lett., 97, 147401(2006).

    [215] R. Shimada et al. Cavity polaritons in ZnO-based hybrid microcavities. Appl. Phys. Lett., 92, 011127(2008).

    [216] J.-R. Chen et al. Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature. Appl. Phys. Lett., 94, 061103(2009).

    [217] T. Guillet et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett., 99, 161104(2011).

    [218] D. Xu et al. Polariton lasing in a ZnO microwire above 450 K. Appl. Phys. Lett., 104, 082101(2014).

    [219] F. Li et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett., 110, 196406(2013).

    [220] M. Saba et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature, 414, 731(2001).

    [221] T. Lecomte et al. Optical parametric oscillation in one-dimensional microcavities. Phys. Rev. B, 87, 155302(2013).

    [222] W. Xie et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett., 108, 166401(2012).

    [223] F. Chen et al. Femtosecond dynamics of a polariton bosonic cascade at room temperature. Nano Lett., 22, 2023(2022).

    [224] O. Jamadi et al. Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl., 7, 82(2018).

    [225] T. Yagafarov et al. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys., 3, 18(2020).

    [226] R. T. Grant et al. Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye. Adv. Opt. Mater., 4, 1615(2016).

    [227] D. M. Coles et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater., 21, 3691(2011).

    [228] J. Keeling, S. Kéna-Cohen. Bose–Einstein condensation of exciton-polaritons in organic microcavities. Annu. Rev. Phys. Chem., 71, 435(2020).

    [229] L. Mazza et al. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B, 88, 075321(2013).

    [230] J. Feist, J. Galego, F. J. Garcia-Vidal. Polaritonic chemistry with organic molecules. ACS Photonics, 5, 205(2018).

    [231] R. F. Ribeiro et al. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci., 9, 6325(2018).

    [232] Z. Jiang et al. Exciton-polaritons and their Bose–Einstein condensates in organic semiconductor microcavities. Adv. Mater., 34, 2106095(2022).

    [233] D. Lidzey et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett., 82, 3316(1999).

    [234] R. J. Holmes, S. R. Forrest. Exciton-photon coupling in organic materials with large intersystem crossing rates and strong excited-state molecular relaxation. Phys. Rev. B, 71, 235203(2005).

    [235] R. Oulton et al. Strong coupling in organic semiconductor microcavities. Semicond. Sci. Technol., 18, S419(2003).

    [236] J. Wenus et al. Tuning the exciton-photon coupling in a strongly coupled organic microcavity containing an optical wedge. Appl. Phys. Lett., 85, 5848(2004).

    [237] J.-H. Song et al. Exciton-polariton dynamics in a transparent organic semiconductor microcavity. Phys. Rev. B, 69, 235330(2004).

    [238] M. S. Bradley, V. Bulović. Intracavity optical pumping of J-aggregate microcavity exciton polaritons. Phys. Rev. B, 82, 033305(2010).

    [239] D. G. Lidzey et al. Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science, 288, 1620(2000).

    [240] N. Takada, T. Kamata, D. D. Bradley. Polariton emission from polysilane-based organic microcavities. Appl. Phys. Lett., 82, 1812(2003).

    [241] E. Hulkko et al. Effect of molecular Stokes shift on polariton dynamics. J. Chem. Phys., 154, 154303(2021).

    [242] D. Ballarini et al. Polariton-induced enhanced emission from an organic dye under the strong coupling regime. Adv. Opt. Mater., 2, 1076(2014).

    [243] S. Gambino et al. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photonics, 1, 1042(2014).

    [244] V. M. Agranovich, M. Litinskaia, D. G. Lidzey. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B, 67, 085311(2003).

    [245] M. Litinskaya, P. Reineker. Loss of coherence of exciton polaritons in inhomogeneous organic microcavities. Phys. Rev. B, 74, 165320(2006).

    [246] S. Kena-Cohen, S. R. Forrest. Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. Phys. Rev. B, 77, 073205(2008).

    [247] R. Holmes, S. Forrest. Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett., 93, 186404(2004).

    [248] H. Kondo et al. Optical responses in single-crystalline organic microcavities. J. Lumin., 128, 777(2008).

    [249] S. Kéna-Cohen, M. Davanço, S. Forrest. Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett., 101, 116401(2008).

    [250] K. S. Daskalakis, S. A. Maier, S. Kéna-Cohen. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett., 115, 035301(2015).

    [251] S. K. Rajendran et al. Low threshold polariton lasing from a solution-processed organic semiconductor in a planar microcavity. Adv. Opt. Mater., 7, 1801791(2019).

    [252] J. Ren et al. Efficient bosonic condensation of exciton polaritons in an H-aggregate organic single-crystal microcavity. Nano Lett., 20, 7550(2020).

    [253] T. Cookson et al. A yellow polariton condensate in a dye filled microcavity. Adv. Opt. Mater., 5, 1700203(2017).

    [254] D. Sannikov et al. Room temperature broadband polariton lasing from a dye-filled microcavity. Adv. Opt. Mater., 7, 1900163(2019).

    [255] K. E. McGhee et al. Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror. Sci. Rep., 11, 20879(2021).

    [256] M. Wei et al. Room temperature polariton lasing in ladder-type oligo(p-phenylene)s with different π-conjugation lengths. Adv. Photon. Res., 2, 2000044(2021).

    [257] I. Carusotto, C. Ciuti. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett., 93, 166401(2004).

    [258] R. Juggins, J. Keeling, M. Szymańska. Coherently driven microcavity-polaritons and the question of superfluidity. Nat. Commun., 9, 4062(2018).

    [259] I. Pockrand, A. Brillante, D. Möbius. Exciton–surface plasmon coupling: an experimental investigation. J. Chem. Phys., 77, 6289(1982).

    [260] J. Bellessa et al. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93, 036404(2004).

    [261] J. Dintinger et al. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B, 71, 035424(2005).

    [262] G. Zengin et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep., 3, 3074(2013).

    [263] A. E. Schlather et al. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett., 13, 3281(2013).

    [264] T. Hakala et al. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett., 103, 053602(2009).

    [265] S. Rodriguez, J. G. Rivas. Surface lattice resonances strongly coupled to rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition. Opt. Express, 21, 27411(2013).

    [266] A. Väkeväinen et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett., 14, 1721(2014).

    [267] E. Eizner et al. Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons. Nano Lett., 15, 6215(2015).

    [268] F. Todisco et al. Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states. ACS Nano, 10, 11360(2016).

    [269] A. M. Berghuis et al. Light–matter coupling strength controlled by the orientation of organic crystals in plasmonic cavities. J. Phys. Chem. C, 124, 12030(2020).

    [270] M. Ramezani et al. Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections. Phys. Rev. Lett., 121, 243904(2018).

    [271] S. Baieva, J. Ihalainen, J. Toppari. Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system. J. Chem. Phys., 138, 044707(2013).

    [272] M. S. Tame et al. Quantum plasmonics. Nat. Phys., 9, 329(2013).

    [273] S. Rodriguez et al. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. Phys. Rev. Lett., 111, 166802(2013).

    [274] F. Todisco et al. Exciton–plasmon coupling enhancement via metal oxidation. ACS Nano, 9, 9691(2015).

    [275] M. De Giorgi et al. Interaction and coherence of a plasmon–exciton polariton condensate. ACS Photonics, 5, 3666(2018).

    [276] C. P. Dietrich et al. An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv., 2, e1600666(2016).

    [277] S. Betzold et al. Coherence and interaction in confined room-temperature polariton condensates with Frenkel excitons. ACS Photonics, 7, 384(2019).

    [278] A. Putintsev et al. Nano-second exciton-polariton lasing in organic microcavities. Appl. Phys. Lett., 117, 123302(2020).

    [279] A. V. Zasedatelev et al. Single-photon nonlinearity at room temperature. Nature, 597, 493(2021).

    [280] G. Lerario et al. Bloch surface waves for MoS2 emission coupling and polariton systems. Appl. Sci., 7, 1217(2017).

    [281] G. Lerario et al. Room temperature Bloch surface wave polaritons. Opt. Lett., 39, 2068(2014).

    [282] G. Lerario et al. High-speed flow of interacting organic polaritons. Light Sci. Appl., 6, e16212(2017).

    [283] M. Liscidini et al. Guided Bloch surface wave polaritons. Appl. Phys. Lett., 98, 121118(2011).

    [284] S. Pirotta et al. Strong coupling between excitons in organic semiconductors and Bloch surface waves. Appl. Phys. Lett., 104, 051111(2014).

    [285] B. Liu, R. Wu, V. M. Menon. Propagating hybrid Tamm exciton polaritons in organic microcavity. J. Phys. Chem. C, 123, 26509(2019).

    [286] J. Tang et al. Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities. Nat. Commun., 12, 3265(2021).

    [287] K. Takazawa et al. Fraction of a millimeter propagation of exciton polaritons in photoexcited nanofibers of organic dye. Phys. Rev. Lett., 105, 067401(2010).

    [288] K. Chevrier et al. Anisotropy and controllable band structure in suprawavelength polaritonic metasurfaces. Phys. Rev. Lett., 122, 173902(2019).

    [289] G. W. Castellanos et al. Exciton-polaritons with magnetic and electric character in all-dielectric metasurfaces. ACS Photonics, 7, 1226(2020).

    [290] D. Urbonas et al. Zero-dimensional organic exciton–polaritons in tunable coupled gaussian defect microcavities at room temperature. ACS Photonics, 3, 1542(2016).

    [291] F. Scafirimuto et al. Room-temperature exciton-polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics, 5, 85(2018).

    [292] M. Dusel et al. Room temperature organic exciton–polariton condensate in a lattice. Nat. Commun., 11, 2863(2020).

    [293] M. Dusel et al. Room-temperature topological polariton laser in an organic lattice. Nano Lett., 21, 6398(2021).

    [294] R. Jayaprakash et al. Two-dimensional organic-exciton polariton lattice fabricated using laser patterning. ACS Photonics, 7, 2273(2020).

    [295] J. Ren et al. Nontrivial band geometry in an optically active system. Nat. Commun., 12, 689(2021).

    [296] T. Rangel et al. Low-lying excited states in crystalline perylene. Proc. Natl. Acad. Sci. U.S.A., 115, 284(2018).

    [297] T. Fujita et al. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B, 57, 12428(1998).

    [298] Z. Han et al. High-Q planar organic–inorganic perovskite-based microcavity. Opt. Lett., 37, 5061(2012).

    [299] H. S. Nguyen et al. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature. Appl. Phys. Lett., 104, 081103(2014).

    [300] J. Wang et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano, 12, 8382(2018).

    [301] V. Agranovich, H. Benisty, C. Weisbuch. Organic and inorganic quantum wells in a microcavity: Frenkel-Wannier-Mott excitons hybridization and energy transformation. Solid State Commun., 102, 631(1997).

    [302] J. Wenus et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Phys. Rev. B, 74, 235212(2006).

    [303] G. Lanty et al. Hybrid cavity polaritons in a ZnO-perovskite microcavity. Phys. Rev. B, 84, 195449(2011).

    [304] T. J. Evans et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 6, 1700982(2018).

    [305] A. Fieramosca et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics, 5, 4179(2018).

    [306] M. Cinquino et al. One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. J. Lumin., 221, 117079(2020).

    [307] Q. Shang et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett., 18, 3335(2018).

    [308] S. Kim et al. Topological control of 2D perovskite emission in the strong coupling regime. Nano Lett., 21, 10076(2021).

    [309] V. Ardizzone et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature, 605, 447(2022).

    [310] R. Su et al. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv., 7, eabf8049(2021).

    [311] L. Polimeno et al. Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol., 16, 1349(2021).

    [312] M. S. Spencer et al. Spin-orbit–coupled exciton-polariton condensates in lead halide perovskites. Sci. Adv., 7, eabj7667(2021).

    [313] L. Polimeno et al. Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic platform. Optica, 8, 1442(2021).

    [314] K. F. Mak et al. Atomically thin MoS 2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [315] S. Wu et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69(2015).

    [316] Y. Ye et al. Monolayer excitonic laser. Nat. Photonics, 9, 733(2015).

    [317] J. Shang et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun., 8, 543(2017).

    [318] A. Chernikov et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 113, 076802(2014).

    [319] K. F. Mak et al. Tightly bound trions in monolayer MoS2. Nat. Mater., 12, 207(2013).

    [320] J. S. Ross et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun., 4, 1474(2013).

    [321] Y. You et al. Observation of biexcitons in monolayer WSe2. Nat. Phys., 11, 477(2015).

    [322] G. Wang et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 90, 021001(2018).

    [323] D. Xiao et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 108, 196802(2012).

    [324] H. Zeng et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 7, 490(2012).

    [325] K. F. Mak et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 7, 494(2012).

    [326] J. R. Schaibley et al. Valleytronics in 2D materials. Nat. Rev. Mater., 1, 16055(2016).

    [327] Z. Yin et al. Single-layer MoS2 phototransistors. ACS Nano, 6, 74(2012).

    [328] B. Radisavljevic et al. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147(2011).

    [329] F. Withers et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater., 14, 301(2015).

    [330] J. Lee, K. F. Mak, J. Shan. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 11, 421(2016).

    [331] W. Xu et al. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett., 19, 7941(2019).

    [332] S. Dufferwiel et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun., 6, 8579(2015).

    [333] L. C. Flatten et al. Room-temperature exciton-polaritons with two-dimensional WS2. Sci. Rep., 6, 33134(2016).

    [334] M. Król et al. Exciton-polaritons in multilayer WSe2 in a planar microcavity. 2D Mater., 7, 015006(2019).

    [335] M. Król et al. Valley polarization of exciton–polaritons in monolayer WSe2 in a tunable microcavity. Nanoscale, 11, 9574(2019).

    [336] J. Cuadra et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2—plasmonic nanoantenna system. Nano Lett., 18, 1777(2018).

    [337] W. Du et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photonics, 6, 2832(2019).

    [338] M. Wurdack et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer. Nat. Commun., 8, 259(2017).

    [339] W. Ye et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [340] T. Hu et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Appl. Phys. Lett., 110, 051101(2017).

    [341] S. Zu et al. Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures. Adv. Opt. Mater., 4, 1463(2016).

    [342] H. Li et al. Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2. Opt. Express, 27, 22951(2019).

    [343] F. Deng et al. Strong exciton–plasmon coupling in a WS2 monolayer on Au film hybrid structures mediated by liquid Ga nanoparticles. Laser Photonics Rev., 14, 1900420(2020).

    [344] L. Zhang et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun., 9, 713(2018).

    [345] Y. Chen et al. Metasurface integrated monolayer exciton polariton. Nano Lett., 20, 5292(2020).

    [346] W. Liu et al. Generation of helical topological exciton-polaritons. Science, 370, 600(2020).

    [347] M. Li et al. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun., 12, 4425(2021).

    [348] Y.-J. Chen et al. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photonics, 11, 431(2017).

    [349] S. Dufferwiel et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics, 11, 497(2017).

    [350] Z. Sun et al. Optical control of room-temperature valley polaritons. Nat. Photonics, 11, 491(2017).

    [351] N. Lundt et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol., 14, 770(2019).

    [352] L. Qiu et al. Room-temperature valley coherence in a polaritonic system. Nat. Commun., 10, 1513(2019).

    [353] T. LaMountain et al. Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. Nat. Commun., 12, 4530(2021).

    [354] S. Dufferwiel et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun., 9, 4797(2018).

    [355] X. Liu et al. Nonlinear valley phonon scattering under the strong coupling regime. Nat. Mater., 20, 1210(2021).

    [356] H. A. Fernandez et al. Electrically tuneable exciton-polaritons through free electron doping in monolayer WS2 microcavities. Adv. Opt. Mater., 7, 1900484(2019).

    [357] M. Sidler et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys., 13, 255(2017).

    [358] B. Chakraborty et al. Control of strong light–matter interaction in monolayer WS2 through electric field gating. Nano Lett., 18, 6455(2018).

    [359] W. Liu et al. Observation and active control of a collective polariton mode and polaritonic band gap in few-layer WS2 strongly coupled with plasmonic lattices. Nano Lett., 20, 790(2020).

    [360] A. M. Dibos et al. Electrically tunable exciton–plasmon coupling in a WSe2 monolayer embedded in a plasmonic crystal cavity. Nano Lett., 19, 3543(2019).

    [361] P. Jiang et al. Tunable strong exciton–plasmon–exciton coupling in WS2–J-aggregates–plasmonic nanocavity. Opt. Express, 27, 16613(2019).

    [362] B. Lee et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett., 17, 4541(2017).

    [363] L. C. Flatten et al. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nat. Commun., 8, 14097(2017).

    [364] J. Gu et al. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol., 14, 1024(2019).

    [365] C. R. Gubbin, S. A. Maier, S. Kéna-Cohen. Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode. Appl. Phys. Lett., 104, 233302(2014).

    [366] P. Stepanov et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett., 126, 167401(2021).

    [367] V. Kravtsov et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [368] Y. Tang et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci. Appl., 11, 94(2022).

    [369] G. Moody et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun., 6, 8315(2015).

    [370] F. Katsch, M. Selig, A. Knorr. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett., 124, 257402(2020).

    [371] L. Zhang et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 591, 61(2021).

    [372] J. Gu et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun., 12, 2269(2021).

    [373] M. Waldherr et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat. Commun., 9, 3286(2018).

    [374] C. Anton-Solanas et al. Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nat. Mater., 20, 1233(2021).

    [375] M. Wurdack et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nat. Commun., 12, 5366(2021).

    [376] H. Shan et al. Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap. Nat. Commun., 12, 6406(2021).

    [377] K. Kang et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature, 550, 229(2017).

    [378] D. J. Gillard et al. Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. 2D Mater., 8, 011002(2020).

    [379] Y. Zhong et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science, 366, 1379(2019).

    [380] P. Kumar et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol., 17, 182(2022).

    [381] Y. Zakharko, A. Graf, J. Zaumseil. Plasmonic crystals for strong light–matter coupling in carbon nanotubes. Nano Lett., 16, 6504(2016).

    [382] V. Agranovich, Y. N. Gartstein, M. Litinskaya. Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem. Rev., 111, 5179(2011).

    [383] R. Holmes et al. Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity. Phys. Rev. B, 74, 235211(2006).

    [384] V. Agranovich et al. Excitons and optical nonlinearities in hybrid organic-inorganic nanostructures. J. Phys., 10, 9369(1998).

    [385] M. Slootsky et al. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys. Rev. Lett., 112, 076401(2014).

    [386] G. Paschos et al. Hybrid organic-inorganic polariton laser. Sci. Rep., 7, 11377(2017).

    [387] Y. Yang, G. Turnbull, I. Samuel. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett., 92, 163306(2008).

    [388] K. P. Kalinin, N. G. Berloff. Toward arbitrary control of lattice interactions in nonequilibrium condensates. Adv. Quantum Technol., 3, 1900065(2020).

    [389] S. Ghosh et al. Quantum reservoir processing. NPJ Quantum Inf., 5, 35(2019).

    [390] S. Ghosh et al. Quantum neuromorphic computing with reservoir computing networks. Adv. Quantum Technol., 4, 2100053(2021).

    [391] P. Mujal et al. Opportunities in quantum reservoir computing and extreme learning machines. Adv. Quantum Technol., 4, 2100027(2021).

    [392] H. Xu et al. Superpolynomial quantum enhancement in polaritonic neuromorphic computing. Phys. Rev. B, 103, 195302(2021).

    [393] F. P. Laussy, A. V. Kavokin, I. A. Shelykh. Exciton-polariton mediated superconductivity. Phys. Rev. Lett., 104, 106402(2010).

    [394] A. Kavokin, P. Lagoudakis. Exciton-mediated superconductivity. Nat. Mater., 15, 599(2016).

    [395] P. Skopelitis et al. Interplay of phonon and exciton-mediated superconductivity in hybrid semiconductor-superconductor structures. Phys. Rev. Lett., 120, 107001(2018).

    [396] M. Sun et al. Theory of BCS-like Bogolon-mediated superconductivity in transition metal dichalcogenides. New J. Phys., 23, 023023(2021).

    [397] M. Sun et al. Strong-coupling theory of condensate-mediated superconductivity in two-dimensional materials. Phys. Rev. Res., 3, 033166(2021).

    Sanjib Ghosh, Rui Su, Jiaxin Zhao, Antonio Fieramosca, Jinqi Wu, Tengfei Li, Qing Zhang, Feng Li, Zhanghai Chen, Timothy Liew, Daniele Sanvitto, Qihua Xiong. Microcavity exciton polaritons at room temperature[J]. Photonics Insights, 2022, 1(1): R04
    Download Citation