• Chinese Optics Letters
  • Vol. 19, Issue 9, 093301 (2021)
Kohei Suzuki1, Minori Tao2, Yuki Maeda1, Hirotaka Nakayama3, Ren Noguchi1, Minoru Oikawa4, Yuichiro Mori4, Takashi Kakue5, Tomoyoshi Shimobaba5, Tomoyoshi Ito5, and Naoki Takada4、*
Author Affiliations
  • 1Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
  • 2Faculty of Science, Kochi University, Kochi 780-8520, Japan
  • 3National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
  • 4Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
  • 5Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
  • show less
    DOI: 10.3788/COL202119.093301 Cite this Article Set citation alerts
    Kohei Suzuki, Minori Tao, Yuki Maeda, Hirotaka Nakayama, Ren Noguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, Naoki Takada. High-speed playback of spatiotemporal division multiplexing holographic 3D video stored in a solid-state drive using a digital micromirror device[J]. Chinese Optics Letters, 2021, 19(9): 093301 Copy Citation Text show less
    Outline of spatiotemporal division multiplexing electroholography.
    Fig. 1. Outline of spatiotemporal division multiplexing electroholography.
    Synthesize color CGH for spatiotemporal division multiplexing electroholography.
    Fig. 2. Synthesize color CGH for spatiotemporal division multiplexing electroholography.
    Reconstructed 3D video playback from the synthesized color CGH for spatiotemporal division multiplexing electroholography.
    Fig. 3. Reconstructed 3D video playback from the synthesized color CGH for spatiotemporal division multiplexing electroholography.
    Binary PWM sequence pattern for gradation representation in red image.
    Fig. 4. Binary PWM sequence pattern for gradation representation in red image.
    Outline of the proposed high-speed playback for spatiotemporal division multiplexing electroholographic 3D video.
    Fig. 5. Outline of the proposed high-speed playback for spatiotemporal division multiplexing electroholographic 3D video.
    Optical setup used in evaluation experiment.
    Fig. 6. Optical setup used in evaluation experiment.
    Picture of optical setup used in evaluation experiment.
    Fig. 7. Picture of optical setup used in evaluation experiment.
    Still 3D images reconstructed from the 3D object “fountain” comprising 1,064,462 points using the spatiotemporal division multiplexing method.
    Fig. 8. Still 3D images reconstructed from the 3D object “fountain” comprising 1,064,462 points using the spatiotemporal division multiplexing method.
    Display time of the six 3D images reconstructed from six sub-objects using the proposed spatiotemporal division multiplexing electroholographic playback from an SSD.
    Fig. 9. Display time of the six 3D images reconstructed from six sub-objects using the proposed spatiotemporal division multiplexing electroholographic playback from an SSD.
    Snapshots of the reconstructed 3D video using the proposed playback from an SSD (Video 1).
    Fig. 10. Snapshots of the reconstructed 3D video using the proposed playback from an SSD (Video 1).
    CPUIntel Core i5-8400 (Clock speed: 2.8 GHz)
    Main memoryDDR4-2666 16 GB
    OSLinux (CentOS 7.8)
    SoftwareNVIDIA CUDA 11.0 SDK
    GPUNVIDIA GeForce GTX TITAN X
    SSDSAMSUNG 860 EVO 500 GB
    DMDTexas Instruments DLP LightCrafter 6500 EVM (Refresh rate: 60 Hz)
    Table 1. Specifications of the Computer System with a DMD Module
    Number of object points1,064,462
    Spatial division number6
    Refresh rate of DMD60 Hz
    Resolution of CGH1980 × 1024
    Frame rate of the proposed playback360 frames per second
    Table 2. Performance of the Proposed Playback from SSD
    Kohei Suzuki, Minori Tao, Yuki Maeda, Hirotaka Nakayama, Ren Noguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, Naoki Takada. High-speed playback of spatiotemporal division multiplexing holographic 3D video stored in a solid-state drive using a digital micromirror device[J]. Chinese Optics Letters, 2021, 19(9): 093301
    Download Citation