[1] Erdmann A[M]. Optical and EUV lithography: a modeling perspective(2023).
[2] Erdmann A[M]. Optical and EUV lithography: a modeling perspective(2021).
[3] Wang X Z, Dai F Z, Li S K et al[M]. Integrated circuit and lithographic tool(2020).
[4] Bruning J H. Optical lithography: 40 years and holding[J]. Proceedings of SPIE, 6520, 652004(2007).
[5] Wei Y Y[M]. Theory and application of advanced lithography for VLSI(2016).
[6] Henke W, Weiss M, Schwalm R et al. Simulation of proximity printing[J]. Microelectronic Engineering, 10, 127-152(1990).
[7] Voelkel R, Vogler U, Bramati A et al. Advanced mask aligner lithography (AMALITH)[J]. Proceedings of SPIE, 8326, 83261Y(2012).
[8] Stuerzebecher L, Fuchs F, Zeitner U D et al. High-resolution proximity lithography for nano-optical components[J]. Microelectronic Engineering, 132, 120-134(2015).
[9] Wood R W. Recent improvements in diffraction gratings and replicas[J]. Nature, 140, 723-724(1937).
[10] Babcock H D. Bright diffraction gratings[J]. Journal of the Optical Society of America, 34, 1-5(1944).
[11] Wood R W. Improved diffraction gratings and replicas[J]. Journal of the Optical Society of America, 34, 509-516(1944).
[12] Ahn S W, Lee K D, Kim J S et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 16, 1874-1877(2005).
[13] Wang J J, Walters F, Liu X M et al. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids[J]. Applied Physics Letters, 90, 061104(2007).
[14] Weber T, Käsebier T, Kley E B et al. Broadband iridium wire grid polarizer for UV applications[J]. Optics Letters, 36, 445-447(2011).
[15] Day R W, Wang S S, Magnusson R. Filter-response line shapes of resonant waveguide gratings[J]. Journal of Lightwave Technology, 14, 1815-1824(1996).
[16] Rosenblatt D, Sharon A, Friesem A A. Resonant grating waveguide structures[J]. IEEE Journal of Quantum Electronics, 33, 2038-2059(1997).
[17] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic crystals: molding the flow of light(2011).
[18] Soroko L M[M]. Holography and coherent optics(2012).
[19] Stetson K A. Holography with total internally reflected light[J]. Applied Physics Letters, 11, 225-226(1967).
[20] Weber A M, Smothers W K, Trout T J et al. Hologram recording in Du Pont's new photopolymer materials[J]. Proceedings of SPIE, 1212, 30-39(1990).
[21] Neto L G, Cirino G A, Mansano R D et al. Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates[J]. Proceedings of SPIE, 4984, 18-28(2003).
[22] Deuter V, Grochowicz M, Brose S et al. Holographic masks for computational proximity lithography with EUV radiation[J]. Proceedings of SPIE, 10809, 108091A(2018).
[23] Wyrowski F, Bryngdahl O. Iterative Fourier-transform algorithm applied to computer holography[J]. Journal of the Optical Society of America A, 5, 1058-1065(1988).
[24] Gerchberg R W. A practical algorithm for the determination of plane from image and diffraction pictures[J]. Optik, 35, 237-246(1972).
[25] Wang H B, He Y, Zhao L X. Holographic double-sided photolithography based on improved gerchberg-saxton algorithm[J]. Laser & Optoelectronics Progress, 60, 1609001(2023).
[26] Freese W, Kämpfe T, Kley E B et al. Design of binary subwavelength multiphase level computer generated holograms[J]. Optics Letters, 35, 676-678(2010).
[27] Li X, Zhang S F, Zhang X T et al. Multi-dimensional light field manipulation by metasurfaces and holographic display technology[J]. Acta Optica Sinica, 43, 1524001(2023).
[28] Clube F S M, Gray S, Struchen D et al. Large-field, high-resolution photolithography[J]. Proceedings of SPIE, 3099, 36-45(1997).
[29] Danylyuk S, Kim H S, Brose S et al. Diffraction-assisted extreme ultraviolet proximity lithography for fabrication of nanophotonic arrays[J]. Journal of Vacuum Science & Technology B, 31, 021602(2013).
[30] Meliorisz B, Erdmann A. Simulation of mask proximity printing[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 6, 023006(2007).
[31] Dill F H. Optical lithography[J]. IEEE Transactions on Electron Devices, 22, 440-444(1975).
[32] Dill F H, Hornberger W P, Hauge P S et al. Characterization of positive photoresist[J]. IEEE Transactions on Electron Devices, 22, 445-452(1975).
[33] Konnerth K L, Dill F H. In-situ measurement of dielectric thickness during etching or developing processes[J]. IEEE Transactions on Electron Devices, 22, 452-456(1975).
[34] Dill F H, Neureuther A R, Tuttle J A et al. Modeling projection printing of positive photoresists[J]. IEEE Transactions on Electron Devices, 22, 456-464(1975).
[35] Sauter E G[M]. Nonlinear optics(1996).
[36] Yeung M. Modeling aerial images in two and three dimensions[EB/OL]. https:∥cir.nii.ac.jp/crid/1573387448931048-960?lang=en
[37] Bernard D A. Simulation of focus effects in photolithography[J]. IEEE Transactions on Semiconductor Manufacturing, 1, 85-97(1988).
[38] Born M, Wolf E[M]. Principles of optics(1999).
[39] Smith H I. A review of submicron lithography[J]. Superlattices and Microstructures, 2, 129-142(1986).
[40] Georg K, Mass Tobias W W, Ann-Katrin U M et al. Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas[J]. Optics Express, 23, 25487-25495(2015).
[41] Zhang Z N, Li S K, Wang X Z. Research progress on the imaging of three-dimensional mask for extreme ultraviolet lithography[J]. Laser & Optoelectronics Progress, 59, 0922021(2022).
[42] Brose S, Danylyuk S, Bahrenberg L et al. Optimized phase-shifting masks for high-resolution resist patterning by interference lithography[J]. Proceedings of SPIE, 10450, 104502A(2017).
[43] Ross I N, Davis G M, Klemitz D. High-resolution holographic image projection at visible and ultraviolet wavelengths[J]. Applied Optics, 27, 967-972(1988).
[44] Brook J, Dandliker R. Submicrometer holographic photolithography[J]. Solid State Technology, 32, 91-95(1989).
[45] Clube F S M, Gray S, Struchen D et al. Holographic mask aligner[J]. Optical Engineering, 32, 2403-2409(1993).
[46] Clube F S M, Gray S, Struchen D et al. Holographic microlithography[J]. Optical Engineering, 34, 2724-2730(1995).
[47] Ehbets P, Herzig H, Kuittinen M et al. High-carrier-frequency fan-out gratings fabricated by total internal reflection holographic lithography[J]. Optical Engineering, 34, 2377-2383(1995).
[48] Nobari A R, Gray S, Clube F et al. Fine-pattern lithography for large substrates using a holographic mask-aligner[J]. Microelectronic Engineering, 41, 149-152(1998).
[49] Clube F, Jorda M, Mourgue S et al. P‐40: 0.5 μm enabling lithography for low‐temperature polysilicon displays[J]. SID Symposium Digest of Technical Papers, 34, 350-353(2003).
[50] Barge M, Bruynooghe S, Clube F et al. 120-nm lithography using off-axis TIR holography and 364 nm exposure wavelength[J]. Microelectronic Engineering, 57, 59-63(2001).
[51] Chen F, Feng B R, Zhang J et al. Total internal reflection holographic lithography technology[J]. Microfabrication Technology, 66-70(1999).
[52] Clube F S M. Method and apparatus for forming a surface-relief hologram mask[P].
[53] Dandliker R, Brook J. Holographic photolithography for submicron VLSI structures[C], 127-132(1989).
[54] Wopschall R H, Pampalone T R. Dry photopolymer film for recording holograms[J]. Applied Optics, 11, 2096-2097(1972).
[55] Carre C, Lougnot D J, Fouassier J P. Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach[J]. Macromolecules, 22, 791-799(1989).
[56] Beesley M J, Foster H, Hambleton K G. Holographic projection of microcircuit patterns[J]. Electronics Letters, 4, 49-50(1968).
[58] Nobari A R, Clube F, Jorda M et al. A fully automated high-resolution exposure system for advanced displays[EB/OL]. https:∥www.holtronic.ch/
[59] Bühling S, Wyrowski F, Kley E B et al. Resolution enhanced proximity printing by phase andamplitude modulating masks[J]. Journal of Micromechanics and Microengineering, 11, 603-611(2001).
[60] Wyrowski F, Kley E B, Buehling S et al. Proximity printing by wave-optically designed masks[J]. Proceedings of SPIE, 4436, 130-139(2001).
[61] Cirino G A, Mansano R D, Verdonck P et al. Phase-shift photomask designed by scalar diffraction theory[J]. ECS Transactions, 23, 487(2009).
[62] Cirino G A, Mansano R D, Verdonck P et al. Diffractive phase-shift lithography photomask operating in proximity printing mode[J]. Optics Express, 18, 16387-16405(2010).
[63] Weichelt T, Vogler U, Stuerzebecher L et al. Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks[J]. Optics Express, 22, 16310-16321(2014).
[64] Levenson M D, Viswanathan N S, Simpson R A. Improving resolution in photolithography with a phase-shifting mask[J]. IEEE Transactions on Electron Devices, 29, 1828-1836(1982).
[65] Goodman J W[M]. Introduction to Fourier optics(2004).
[66] Brenner K H, Singer W. Light propagation through microlenses: a new simulation method[J]. Applied Optics, 32, 4984-4988(1993).
[67] Gubin L G, Polyak B T, Raik E V. The method of projections for finding the common point of convex sets[J]. USSR Computational Mathematics and Mathematical Physics, 7, 1-24(1967).
[68] Youla D C, Webb H. Image restoration by the method of convex projections: part 1: theory[J]. IEEE Transactions on Medical Imaging, 1, 81-94(1982).
[69] Wyrowski F. Diffractive optical elements: iterative calculation of quantized, blazed phase structures[J]. Journal of the Optical Society of America A, 7, 961-969(1990).
[70] Eckstein W, Kley E B, Tünnermann A. Comparison of different simulation methods for effective medium computer generated holograms[J]. Optics Express, 21, 12424-12433(2013).
[71] Borisov M V, Borovikov V A, Gavrikov A A et al. Methods of the development and correction of the quality of holographic images of geometry objects with subwave-size elements[J]. Doklady Physics, 55, 436-440(2010).
[72] Borisov M V, Chelyubeev D A, Chernik V V et al. Analysis of an effect of perturbations in SWHM and illuminating optical scheme parameters on an aerial image[C], 165-169(2012).
[73] Borisov M V, Chelyubeev D A, Chernik V V et al. Phase-shift at subwavelength holographic lithography (SWHL)[J]. Proceedings of SPIE, 8352, 83520P(2012).
[75] Borisov M, Chelubeev D, Chernik V et al. Mathematical problems of holographic mask synthesis[J]. Proceedings of SPIE, 11324, 113241I(2020).
[76] Borisov M, Chelyubeev D, Chernik V et al. Experimental verification of sub-wavelength holographic lithography physical concept for single exposure fabrication of complex structures on planar and nonplanar surfaces[J]. Proceedings of SPIE, 10446, 104460X(2017).
[77] Borisov M, Chelubeev D, Chernik V et al. Experimental verification of sub-wavelength holographic lithigraphy (SWHL) concept[J]. Proceedings of SPIE, 11324, 113241J(2020).
[78] Frere C, Leseberg D, Bryngdahl O. Computer-generated holograms of three-dimensional objects composed of line segments[J]. Journal of the Optical Society of America A, 3, 726-730(1986).
[79] Borisov M, Chelubeev D, Chernik V et al. Sub-wavelength holographic lithography (SWHL)[J]. Proceedings of SPIE, 11324, 1132417(2020).
[80] Cheng Y C, Isoyan A, Wallace J et al. Extreme ultraviolet holographic lithography: Initial results[J]. Applied Physics Letters, 90, 023116(2007).
[81] Brose S, Danylyuk S, Juschkin L et al. Broadband transmission masks, gratings and filters for extreme ultraviolet and soft X-ray lithography[J]. Thin Solid Films, 520, 5080-5085(2012).
[82] Deuter V, Grochowicz M, Brose S et al. Computational proximity lithography with extreme ultraviolet radiation[J]. Optics Express, 28, 27000-27012(2020).
[83] Bu H Z, Jiao S M. Review of computer-generated phase-only hologram optimization algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 36, 810-826(2021).
[84] Maiden A, McWilliam R, Purvis A et al. Nonplanar photolithography with computer-generated holograms[J]. Optics Letters, 30, 1300-1302(2005).
[85] Purvis A, Toriz-Garcia J J, Cowling J J et al. Holographic lithography[C](2014).
[86] McWilliam R, Johnson S, Maiden A et al. Non-planar photolithography using digital holograms[C], FWX6(2006).
[87] Williams G L, McWilliam R, Maiden A et al. Photolithography on grossly non-planar substrates[C](2005).
[88] Williams G, Seed L, Purvis A et al. Non‐planar interconnect[J]. Circuit World, 31, 10-14(2005).
[89] Ivey P, McWilliam R, Maiden A et al. Photolithography on three dimensional substrates[C](2006).
[90] Toriz-Garcia J J, Williams G L, McWilliam R et al. Controlled-width track in through silicon via using 3D holographic photolithography with modified electrodepositable photoresist[J]. Journal of Micromechanics and Microengineering, 20, 015012(2010).
[91] Cowling J J, Williams G L, Purvis A et al. Three-dimensional holographic lithography by an iterative algorithm[J]. Optics Letters, 36, 2495-2497(2011).
[92] Purvis A, McWilliam R, Johnson S et al. Photolithographic patterning of bihelical tracks onto conical substrates[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 6, 043015(2007).
[93] Purvis A, McWilliam R, Johnson S et al. Photolithographic patterning of bihelical tracks onto conical substrates[J]. Journal of Micro/Nanolithography, 6, 043015(2007).
[94] Toriz-Garcia J J, Williams G L, McWilliam R et al. Vertical tracks on the sidewall of a silicon die using 3D holographic photolithography[J]. Journal of Micromechanics and Microengineering, 21, 085034(2011).
[95] Toriz-Garcia J J, Cowling J J, Williams G L et al. Fabrication of a 3D electrically small antenna using holographic photolithography[J]. Journal of Micromechanics and Microengineering, 23, 055010(2013).
[96] Brueck S R J. Optical and interferometric lithography - nanotechnology enablers[J]. Proceedings of the IEEE, 93, 1704-1721(2005).
[97] Lu C, Lipson R H. Interference lithography: a powerful tool for fabricating periodic structures[J]. Laser & Photonics Reviews, 4, 568-580(2010).
[98] Jeon T, Kim D H, Park S G. Holographic fabrication of 3D nanostructures[J]. Advanced Materials Interfaces, 5, 1800330(2018).
[99] Zhang D M. Fabrication of 2D photonic crystal templates by holographic lithography and soft lithography[D](2007).
[100] Xue G P, Zhai Q H, Lu H O et al. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability[J]. Microsystems & Nanoengineering, 7, 31(2021).
[101] Ke C H, Peng Z A, Chen Q L et al. Advance in field emission display[J]. Chinese Journal of Vacuum Science and Technology, 17, 119-128(1997).
[102] Liu Y B, Min G Q, Song Z T et al. Si2Sb2Te5 based ultra-high-density PCRAM arrays fabricated by UV-IL[J]. Micronanoelectronic Technology, 46, 45-49(2009).
[103] Mizeikis V, Matsuo S, Juodkazis S et al[M]. Femtosecond laser microfabrication of photonic crystals, 239-286(2006).
[104] Stankevičius E, Gedvilas M, Voisiat B et al. Fabrication of periodic micro-structures by holographic lithography[J]. Lithuanian Journal of Physics, 53, 227-237(2013).
[105] Berger V, Gauthier-Lafaye O, Costard E. Photonic band gaps and holography[J]. Journal of Applied Physics, 82, 60-64(1997).
[106] Campbell M, Sharp D N, Harrison M T et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 404, 53-56(2000).
[107] Kondo T, Matsuo S, Juodkazis S et al. Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals[J]. Applied Physics Letters, 79, 725-727(2001).
[108] Stankevičius E, Malinauskas M, Gedvilas M et al. Fabrication of periodic micro-structures by multi-photon polymerization using the femtosecond laser and four-beam interference[J]. Materials Science, 17, 244-248(2011).
[109] Malinauskas M, Bičkauskaitė G, Rutkauskas M et al. Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption[J]. Lithuanian Journal of Physics, 50, 135-140(2010).
[110] Moon J H, Yang S M, Pine D J et al. Multiple-exposure holographic lithography with phase shift[J]. Applied Physics Letters, 85, 4184-4186(2004).
[111] Lai N D, Huang Y D, Lin J H et al. Fabrication of periodic nanovein structures by holography lithography technique[J]. Optics Express, 17, 3362-3369(2009).
[112] Ye Z, Wang Y, Gao Z Q et al. Preparation of 528 nm periodic hole array based on holographic lithography system[J]. Chinese Journal of Lasers, 42, 0809003(2015).
[113] Liao L F, Li S K, Zhang Z N et al. Research on source and mask optimization[J]. Laser & Optoelectronics Progress, 59, 0922010(2022).