• Advanced Photonics
  • Vol. 4, Issue 1, 016001 (2022)
Danran Li1、2, Nina Wang3, Tianyang Zhang3, Guangxing Wu1、2, Yifeng Xiong1、2, Qianqian Du4, Yunfei Tian1、2, Weiwei Zhao3, Jiandong Ye4, Shulin Gu4, Yanqing Lu1、2, Dechen Jiang3、*, and Fei Xu1、2、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
  • 2Nanjing University, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 3Nanjing University, School of Chemistry and Chemical Engineering, Nanjing, China
  • 4Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.4.1.016001 Cite this Article Set citation alerts
    Danran Li, Nina Wang, Tianyang Zhang, Guangxing Wu, Yifeng Xiong, Qianqian Du, Yunfei Tian, Weiwei Zhao, Jiandong Ye, Shulin Gu, Yanqing Lu, Dechen Jiang, Fei Xu. Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis[J]. Advanced Photonics, 2022, 4(1): 016001 Copy Citation Text show less
    References

    [1] A. Colom et al. A fluorescent membrane tension probe. Nat. Chem., 10, 1118-1125(2018).

    [2] J. S. Donner et al. Mapping intracellular temperature using green fluorescent protein. Nano Lett., 12, 2107-2111(2012).

    [3] K. Okabe et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun., 3, 705(2012).

    [4] J. M. Yang, H. Yang, L. Lin. Quantum dot nanothermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano, 5, 5067-5071(2011).

    [5] X. Chen et al. Imaging the transient heat generation of individual nanostructures with a mechanoresponsive polymer. Nat. Commun., 8, 1498(2017).

    [6] G. Kucsko et al. Nanometre-scale thermometry in a living cell. Nature, 500, 54-58(2013).

    [7] Z. Chen et al. Single gold@silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J. Am. Chem. Soc., 137, 1903-1908(2015).

    [8] O. A. Savchuk et al. Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution. J. Mater. Chem. C, 4, 6602-6613(2016).

    [9] X. Zhu et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun., 7, 10437(2016).

    [10] P. C. Wuytens et al. Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy. Analyst, 140, 8080-8087(2015).

    [11] K. Yum et al. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Lett., 9, 2193-2198(2009).

    [12] T. Vo-Dinh et al. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat. Biotechnol., 18, 764-767(2000).

    [13] Q. Yang et al. Fiber-optic-based micro-probe using hexagonal 1-in-6 fiber configuration for intracellular single-cell pH measurement. Anal. Chem., 87, 7171-7179(2015).

    [14] R. Yan et al. Nanowire-based single-cell endoscopy. Nat. Nanotechnol., 7, 191-196(2012).

    [15] J. Lee et al. Quantitative probing of Cu2+ ions naturally present in single living cells. Adv. Mater., 28, 4071-4076(2016).

    [16] J. H. Lee et al. Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano Lett., 16, 1509-1513(2016).

    [17] X. Cao et al. Single silicon nanowire-based fluorescent sensor for endogenous hypochlorite in an individual cell. Adv. Biosyst., 2, 1800213(2018).

    [18] C. Chiappini et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater., 14, 532-539(2015).

    [19] W. Hong et al. Nanoscale label-free bioprobes to detect intracellular proteins in single living cells. Sci. Rep., 4, 6179(2014).

    [20] G. Shambat et al. Single-cell photonic nanocavity probes. Nano Lett., 13, 4999-5005(2013).

    [21] A. Meister et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett., 9, 2501-2507(2009).

    [22] P. Knittel et al. Focused ion beam-assisted fabrication of soft high-aspect ratio silicon nanowire atomic force microscopy probes. Ultramicroscopy, 179, 24-32(2017).

    [23] O. Guillaume-Gentil et al. Tunable single-cell extraction for molecular analyses. Cell, 166, 506-516(2016).

    [24] F. Santoro et al. Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano, 11, 8320-8328(2017).

    [25] S. M. Yoo et al. Electrotriggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector. Nano Lett., 13, 2431-2435(2013).

    [26] G. Lu et al. Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv. Mater., 26, 5124-5128(2014).

    [27] P. D. Tovee et al. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes. Phys. Chem. Chem. Phys., 16, 1174-1181(2014).

    [28] R. Pan et al. Resistive-pulse sensing inside single living cells. J. Am. Chem. Soc., 142, 5778-5784(2020).

    [29] H. Liu et al. A multiparameter pH-sensitive nanodevice based on plasmonic nanopores. Adv. Funct. Mater., 28, 1703847(2018).

    [30] Y. Zhang et al. Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano, 10, 3214-3221(2016).

    [31] R. Singhal et al. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol., 6, 57-64(2011).

    [32] D. Chrétien et al. Mitochondria are physiologically maintained at close to 50°C. PLoS Biol., 16, e2003992(2018).

    [33] S. Arai et al. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chem. Commun., 51, 8044-8047(2015).

    [34] X. Fan et al. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta, 620, 8-26(2008).

    [35] J. L. Kou et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express, 19, 18452-18457(2011).

    [36] J. L. Kou et al. Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express, 18, 14245-14250(2010).

    [37] Z. Hu, X. Guo, L. Tong. Freestanding nanowire ring laser. Appl. Phys. Lett., 103, 183104(2013).

    [38] X. Xing et al. Ultracompact photonic coupling splitters twisted by PTT nanowires. Nano Lett., 8, 2839-2843(2008).

    [39] A. Fu et al. Widely tunable distributed Bragg reflectors integrated into nanowire waveguides. Nano Lett., 15, 6909-6913(2015).

    [40] R. Röder et al. Ultrafast dynamics of lasing semiconductor nanowires. Nano Lett., 15, 4637-4643(2015).

    [41] J. Tatebayashi et al. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics, 9, 501-505(2015).

    [42] T. K. Kim et al. Physicochemical properties of nucleoli in live cells analyzed by label-free optical diffraction tomography. Cells, 8, 699(2019).

    [43] D. R. Li et al. Ethanol gas sensor based on a hybrid polymethyl methacrylate–silica microfiber coupler. J. Lightwave Technol., 36, 2031-2036(2018).

    [44] F. Chiavaioli et al. Biosensing with optical fiber gratings. Nanophotonics, 6, 663-679(2017).

    [45] S. Cohen-Maslaton et al. Cell and nucleus refractive-index mapping by interferometric phase microscopy and rapid confocal fluorescence microscopy. J. Biophotonics, 13, e202000117(2020).

    [46] F. Chiavaioli. Recent development of resonance-based optical sensors and biosensors. Optics, 1, 255-258(2020).

    [47] A. Calabuig et al. Investigating fibroblast cells under ‘safe’ and ‘injurious’ blue-light exposure by holographic microscopy. J. Biophotonics, 10, 919-927(2017).

    [48] J. J. M. Landry et al. The genomic and transcriptomic landscape of a HeLa cell line. G3-Genes Genom. Genet., 3, 1213-1224(2013).

    [49] C. Huang et al. Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis, 19, 922-932(2014).

    [50] T. Erdogan. Fiber grating spectra. J. Lightwave Technol., 15, 1277-1294(1997).

    Danran Li, Nina Wang, Tianyang Zhang, Guangxing Wu, Yifeng Xiong, Qianqian Du, Yunfei Tian, Weiwei Zhao, Jiandong Ye, Shulin Gu, Yanqing Lu, Dechen Jiang, Fei Xu. Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis[J]. Advanced Photonics, 2022, 4(1): 016001
    Download Citation