• Photonics Research
  • Vol. 10, Issue 7, 1582 (2022)
Wen-Rong Qi1、2、†, Jie Zhou3、†, Ling-Jun Kong4、5、†, Zhen-Peng Xu6, Hui-Xian Meng3, Rui Liu1, Zhou-Xiang Wang1, Chenghou Tu1, Yongnan Li1、8、*, Adán Cabello7, Jing-Ling Chen3、9、*, and Hui-Tian Wang4、10、*
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
  • 2School of Physics, Henan Normal University, Xinxiang 453007, China
  • 3Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
  • 4National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
  • 5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 6Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany
  • 7Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
  • 8e-mail: liyongnan@nankai.edu.cn
  • 9e-mail: chenjl@nankai.edu.cn
  • 10e-mail: htwang@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.452704 Cite this Article Set citation alerts
    Wen-Rong Qi, Jie Zhou, Ling-Jun Kong, Zhen-Peng Xu, Hui-Xian Meng, Rui Liu, Zhou-Xiang Wang, Chenghou Tu, Yongnan Li, Adán Cabello, Jing-Ling Chen, Hui-Tian Wang. Stronger Hardy-like proof of quantum contextuality[J]. Photonics Research, 2022, 10(7): 1582 Copy Citation Text show less

    Abstract

    A Hardy-like proof of quantum contextuality is a compelling way to see the conflict between quantum theory and noncontextual hidden variables (NCHVs), as the latter predict that a particular probability must be zero, while quantum theory predicts a nonzero value. For the existing Hardy-like proofs, the success probability tends to 1/2 when the number of measurement settings n goes to infinity. It means the conflict between the existing Hardy-like proof and NCHV theory is weak, which is not conducive to experimental observation. Here we advance the study of a stronger Hardy-like proof of quantum contextuality, whose success probability is always higher than the previous ones generated from a certain n-cycle graph. Furthermore, the success probability tends to 1 when n goes to infinity. We perform the experimental test of the Hardy-like proof in the simplest case of n=7 by using a four-dimensional quantum system encoded in the polarization and orbital angular momentum of single photons. The experimental result agrees with the theoretical prediction within experimental errors. In addition, by starting from our Hardy-like proof, one can establish the stronger noncontextuality inequality, for which the quantum-classical ratio is higher with the same n, which provides a new method to construct some optimal noncontextuality inequalities. Our results offer a way for optimizing and enriching exclusivity graphs, helping to explore more abundant quantum properties.
    j=1,2,n+12P(τjρ|ρ)=1,j=2,3,n+32P(τjρ|ρ)=1,j=1,n12,n1P(τjρ|ρ)=1,

    View in Article

    PSUCP(τnρ|ρ)=cos2(2πn1).

    View in Article

    In=2j=1n12P(τjρ|ρ)+j=n+12nP(τjρ|ρ)NCHVn12.

    View in Article

    LGl1,l2(r,φ)=12[LGl1(r,φ)+eiξLGl2(r,φ)].

    View in Article

    |ϕ=12(|H,+1+|V,1+|H,+3+|V,3).

    View in Article

    Pi=yΛp(y)i(y),(A1)

    View in Article

    i(y)j(y)=0.(A2)

    View in Article

    P1+P2+Pn+12=1,P2+P3+Pn+32=1,P1+Pn12+Pn1=1.(A3)

    View in Article

    1(y)+2(y)+n+12(y)=1,2(y)+3(y)+n+32(y)=1,1(y)+n12(y)+n1(y)=1.(A4)

    View in Article

    [1(y)+2(y)+n+12(y)]+[2(y)+3(y)+n+32(y)]++[1(y)+n+12(y)+n1(y)]=2[1(y)+δ2(y)++n12(y)]+[n+12(y)+n+32(y)++n1(y)]=n12.(A5)

    View in Article

    1(y)+2(y)++n12(y)n1212=n34,(A6)

    View in Article

    n+12(y)+n+32(y)++n1(y)1.(A7)

    View in Article

    Pn=yΛp(y)n(y)=0.(A8)

    View in Article

    PSUC=P(τnρ|ρ)=cos2(2πn1).(B1)

    View in Article

    PCBCB=cosχ(π/χ)1+cosχ(π/χ),(C1)

    View in Article

    In=2j=1(n1/2)P(τjρ|ρ)+j=(n+1)/2nP(τjρ|ρ)NCHVαnQTQn.(D1)

    View in Article

    rn=Qnαn,(E1)

    View in Article

    In=j=1nP(0,1|j,j+1)NCHVαnQTQn,(E2)

    View in Article

    αn=n12,(E3)

    View in Article

    Qn=ncos(π/n)1+cos(π/n).(E4)

    View in Article

    rn=Qnαn=2ncos(π/n)(n1)[1+cos(π/n)].(E5)

    View in Article

    In=ci=1(n1)/2P(τiρ|ρ)+di=(n+1)/2n1P(τiρ|ρ)+P(τnρ|ρ)NCHVαnQTQn,(F1)

    View in Article

    Qn(c,d,x,θ)=cn12λ2sin2(θ+x)1+λ2+dn12cos2xr2λ2sin2θ+1+sin2x.(F2)

    View in Article

    αn(c,d)=max{n12d,1+n34c,d+n34c}.(F3)

    View in Article

    rn(c,d,x,θ)=Qn(c,d,x,θ)αn(c,d).(F4)

    View in Article

    Qnmax(n1)2+cos2(2πn1),(F5)

    View in Article

    Q7(c,d,x,θ)=csin2(θ+x)+3dcos2(x)2cos(2θ)+sin2(x),(F6)

    View in Article

    α7(c,d)=max{3d,1+c,d+c}.(F7)

    View in Article

    r7(c,d,x,θ)=Q7(c,d,x,θ)α7(c,d).(F8)

    View in Article

    r7(c,d,x,θ)=Q7(c,d,x,θ)α7(c,d)=csin2(θ+x)+3dcos2(x)2cos(2θ)+sin2(x)d+ccsin2(θ+x)+3dcos2(x)2cos(2θ)+sin2(x)3d=c3dsin2(θ+x)+3d3dcos2(x)2cos(2θ)+13dsin2(x)=c3dsin2(θ+x)+cos2(x)2cos(2θ)+13dsin2(x).(F17)

    View in Article

    r7(c,x,θ)=Q7(c,d,x,θ)α7(c,d)=csin2(θ+x)+3cos2(x)2cos(2θ)+sin2(x)1+c.(F18)

    View in Article

    LGl1,l2(r,φ)=12[LGl1(r,φ)+eiξLGl2(r,φ)],(G1)

    View in Article

    |ϕnon=(A|H,+1+Beiξ|H,+3)+eiΔ(A|V,1+Beiξ|V,3),(G2)

    View in Article

    δ(_,0|oj,ok)=|P(0|ok)P(0,0|oj,ok)P(1,0|oj,ok)|,δ(_,1|oj,ok)=|P(1|ok)P(0,1|oj,ok)P(1,1|oj,ok)|,(G3)

    View in Article

    δ(0,_|oj,ok)=|P(0|oj)P(0,0|oj,ok)P(0,1|oj,ok)|,δ(1,_|oj,ok)=|P(1|oj)P(1,0|oj,ok)P(1,1|oj,ok)|,(G4)

    View in Article

    P(0,0|oj,ok)=P(0|oj)P(0,1|oj,ok),P(0,1|oj,ok)=P(0|oj)P(1|ok),P(1,0|oj,ok)=P(1|oj)P(1,1|oj,ok),P(1,1|oj,ok)=P(1|oj)P(1|ok).(G5)

    View in Article

    |νj=(I|νjνj|)|ϕ[ϕ|(I|νjνj|)|ϕ]1/2,(G6)

    View in Article

    |ν1=13(0,1,1,1)T,|ν2=13(1,0,1,1)T,|ν3=13(1,1,0,1)T,|ν4=12(0,1,1,0)T,|ν5=13(1,0,1,0)T,|ν6=12(1,1,0,0)T,|ν7=36(1,1,1,3)T.(G7)

    View in Article

    Wen-Rong Qi, Jie Zhou, Ling-Jun Kong, Zhen-Peng Xu, Hui-Xian Meng, Rui Liu, Zhou-Xiang Wang, Chenghou Tu, Yongnan Li, Adán Cabello, Jing-Ling Chen, Hui-Tian Wang. Stronger Hardy-like proof of quantum contextuality[J]. Photonics Research, 2022, 10(7): 1582
    Download Citation