• Photonics Research
  • Vol. 9, Issue 11, 11002132 (2021)
Tingzhu Wu1、2、†, Yue Lin1、2、†, Yu-Ming Huang3、†, Meng Liu1, Konthoujam James Singh3, Wansheng Lin1, Tingwei Lu1, Xi Zheng1, Jianyang Zhou1, Hao-Chung Kuo3、4、5、*, and Zhong Chen1、2、6、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
  • 2Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Xiamen 361005, China
  • 3Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
  • 4Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, China
  • 5e-mail: hckuo@faculty.nctu.edu.tw
  • 6e-mail: chenz@xmu.edu.cn
  • show less

    Abstract

    A promising approach for the development of effective full-color displays is to combine blue microLEDs (μLEDs) with color conversion layers. Perovskite nanocrystals (PNCs) are notable for their tolerance to defects and provide excellent photoluminescence quantum yields and high color purity compared to metal chalcogenide quantum dots. The stability of PNCs in ambient conditions and under exposure to blue light can be improved using a SiO2 coating. This study proposes a device that could be used for both display and visible light communication (VLC) applications. The semipolar blue μLED array fabricated in this study shows a negligible wavelength shift, indicating a significant reduction in the quantum confined Stark effect. Owing to its shorter carrier lifetime, the semipolar μLED array exhibits an impressive peak 3 dB bandwidth of 655 MHz and a data transmission rate of 1.2 Gb/s corresponding to an injection current of 200 mA. The PNC–μLED device assembled from a semipolar μLED array with PNCs demonstrates high color stability and wide color-gamut features, achieving 127.23% and 95.00% of the National Television Standards Committee standard and Rec. 2020 on the CIE 1931 color diagram, respectively. These results suggest that the proposed PNC–μLED device is suitable for both display-related and VLC applications.
    P=ImaxIminImax+Imin,

    View in Article

    I(t)=α1exp(tτ1)+α2exp(tτ2),

    View in Article

    τave=α1τ1+α2τ2α1+α2,

    View in Article