• Frontiers of Optoelectronics
  • Vol. 14, Issue 1, 37 (2021)
Qi JIN, Yiwen E, and Xi-Cheng ZHANG*
Author Affiliations
  • The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
  • show less
    DOI: 10.1007/s12200-020-1070-7 Cite this Article
    Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Frontiers of Optoelectronics, 2021, 14(1): 37 Copy Citation Text show less
    References

    [1] Wang T, Klarskov P, Jepsen P U. Ultrabroadband THz timedomain spectroscopy of a free-flowing water film. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 425–431

    [2] Lee Y S. Principles of Terahertz Science and Technology. Vol. 170. New York: Springer US, 2009

    [3] Mittleman D M. Twenty years of terahertz imaging. Optics Express, 2018, 26(8): 9417–9431

    [4] Zhao J, E Y, Williams K, Zhang X C, Boyd RW. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light, Science & Applications, 2019, 8(1): 55

    [5] Look D C. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 1993, 231(1–2): 61–73

    [6] Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923

    [7] Boyd R W. Nonlinear Optics. 2nd ed. New York: Academic Press, 2003

    [8] Hebling J, Almasi G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166

    [9] Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19

    [10] Fülop J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559

    [11] Zhang X C, Ma X, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P. Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992, 61(26): 3080–3082

    [12] Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field singlecycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116

    [13] Shalaby M, Hauri C P. Demonstration of a low-frequency threedimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976

    [14] Fülop J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources. Advanced Optical Materials, 2020, 8(3): 1900681

    [15] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

    [16] Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677

    [17] Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

    [18] Johnson K, Price-Gallagher M, Mamer O, Lesimple A, Fletcher C, Chen Y, Lu X, Yamaguchi M, Zhang X C. Water vapor: an extraordinary terahertz wave source under optical excitation. Physics Letters A, 2008, 372(38): 6037–6040

    [19] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005

    [20] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

    [21] Kim K Y, Taylor A, Glownia J, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photonics, 2008, 2(10): 605–609

    [22] Kim K Y. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706

    [23] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001

    [24] Ronne C, Thrane L, Astrand P O, Wallqvist A, Mikkelsen K V, Keiding S R. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 1997, 107(14): 5319–5331

    [25] Thrane L, Jacobsen R H, Uhd Jepsen P, Keiding S R. THz reflection spectroscopy of liquid water. Chemical Physics Letters, 1995, 240(4): 330–333

    [26] Kotz J C, Treichel P M, Townsend J. Chemistry and Chemical Reactivity. Raleigh, NC: Cengage Learning, 2012

    [27] Engels D, Schmid-Burgk J, Walmsley C. Water maser emission from OH/IR stars. Astronomy & Astrophysics, 1986, 167: 129–144

    [28] Neufeld D A, Melnick G J. Excitation of millimeter and submillimeter water masers. Astrophysical Journal, 1991, 368: 215–230

    [29] Neufeld D A, Maloney P R, Conger S. Water maser emission from X-ray-heated circumnuclear gas in active galaxies. Astrophysical Journal, 1994, 436: 127–130

    [30] Alfano R R, Shapiro S. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Physical Review Letters, 1970, 24(11): 592–594

    [31] Jimbo T, Caplan V L, Li Q X, Wang Q Z, Ho P P, Alfano R R. Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations. Optics Letters, 1987, 12(7): 477–479

    [32] Kandidov V, Kosareva O, Golubtsov I, Liu W, Becker A, Akozbek N, Bowden C M, Chin S L. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Applied Physics B, Lasers and Optics, 2003, 77(2–3): 149–165

    [33] Liu W, Petit S, Becker A, Akozbek N, Bowden C M, Chin S L. Intensity clamping of a femtosecond laser pulse in condensed matter. Optics Communications, 2002, 202(1–3): 189–197

    [34] Dharmadhikari A, Rajgara F, Mathur D. Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses. Applied Physics B, Lasers and Optics, 2005, 80(1): 61–66

    [35] Kaya N, Strohaber J, Kolomenskii A A, Kaya G, Schroeder H, Schuessler H A. White-light generation using spatially-structured beams of femtosecond radiation. Optics Express, 2012, 20(12): 13337–13346

    [36] Dharmadhikari J A, Steinmeyer G, Gopakumar G, Mathur D, Dharmadhikari A K. Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Optics Letters, 2016, 41(15): 3475–3478

    [37] Attwood D, Sakdinawat A. X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge: Cambridge University Press, 2017

    [38] McNaught S, Fan J, Parra E, Milchberg H M. A pump–probe investigation of laser-droplet plasma dynamics. Applied Physics Letters, 2001, 79(25): 4100–4102

    [39] Düsterer S, Schwoerer H, Ziegler W, Ziener C, Sauerbrey R. Optimization of EUV radiation yield from laser-produced plasma. Applied Physics B, Lasers and Optics, 2001, 73(7): 693–698

    [40] Kurz H G, Steingrube D S, Ristau D, Lein M, Morgner U, Kovacev M. High-order-harmonic generation from dense water microdroplets. Physical Review A, 2013, 87(6): 063811

    [41] Flettner A, Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G. High-harmonic generation and plasma radiation from water microdroplets. Applied Physics B, Lasers and Optics, 2003, 77(8): 747–751

    [42] Donnelly T D, Rust M, Weiner I, Allen M, Smith R A, Steinke C A, Wilks S, Zweiback J, Cowan T E, Ditmire T. Hard X-ray and hot electron production from intense laser irradiation of wavelength-scale particles. Journal of Physics B, Atomic, Molecular, and Optical Physics, 2001, 34(10): L313–L320

    [43] Malmqvist L, Rymell L, Hertz H M. Droplet-target laser-plasma source for proximity X-ray lithography. Applied Physics Letters, 1996, 68(19): 2627–2629

    [44] Berglund M, Rymell L, Hertz H M. Ultraviolet prepulse for enhanced X-ray emission and brightness from droplet-target laser plasmas. Applied Physics Letters, 1996, 69(12): 1683–1685

    [45] Rymell L, Hertz H M. Droplet target for low-debris laser-plasma soft X-ray generation. Optics Communications, 1993, 103(1–2): 105–110

    [46] Nikogosyan D N, Oraevsky A A, Rupasov V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation. Chemical Physics, 1983, 77(1): 131–143

    [47] Crowell R A, Bartels D M. Multiphoton ionization of liquid water with 3.0-5.0 eV photons. Journal of Physical Chemistry, 1996, 100(45): 17940–17949

    [48] Kennedy P K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE Journal of Quantum Electronics, 1995, 31(12): 2241–2249

    [49] Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media. Progress in Quantum Electronics, 1997, 21(3): 155–248

    [50] Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

    [51] Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220

    [52] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525

    [53] Jin Q, E Y, Williams K, Dai J, Zhang X C. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103

    [54] Zhang L L, Wang W M, Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M, Zhang X C. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005

    [55] Wang W M, Gibbon P, Sheng Z M, Li Y T. Integrated simulation approach for laser-driven fast ignition. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(1): 013101

    [56] Buccheri F, Zhang X C. Terahertz emission from laser-induced microplasma in ambient air. Optica, 2015, 2(4): 366–369

    [57] Zhang J Z, Lam J K, Wood C F, Chu B T, Chang R K. Explosive vaporization of a large transparent droplet irradiated by a high intensity laser. Applied Optics, 1987, 26(22): 4731–4737

    [58] Schaffer C, Nishimura N, Glezer E, Kim A, Mazur E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Optics Express, 2002, 10(3): 196–203

    [59] Courvoisier F, Boutou V, Favre C, Hill S C, Wolf J P. Plasma formation dynamics within a water microdroplet on femtosecond time scales. Optics Letters, 2003, 28(3): 206–208

    [60] Lindinger A, Hagen J, Socaciu L D, Bernhardt T M, Woste L, Duft D, Leisner T. Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Applied Optics, 2004, 43(27): 5263–5269

    [61] Stan C A, Milathianaki D, Laksmono H, Sierra R G, McQueen T A, Messerschmidt M,Williams G J, Koglin J E, Lane T J, HayesM J, Guillet S A H, Liang M, Aquila A L,Willmott P R, Robinson J S, Gumerlock K L, Botha S, Nass K, Schlichting I, Shoeman R L, Stone H A, Boutet S. Liquid explosions induced by X-ray laser pulses. Nature Physics, 2016, 12(10): 966–971

    [62] E Y, Jin Q, Tcypkin A, Zhang X C. Terahertz wave generation from liquid water films via laser-induced breakdown. Applied Physics Letters, 2018, 113(18): 181103

    [63] Bebb H B, Gold A. Multiphoton ionization of hydrogen and raregas atoms. Physical Review, 1966, 143(1): 1–24

    [64] DeMichelis C. Laser induced gas breakdown: a bibliographical review. IEEE Journal of Quantum Electronics, 1969, 5(4): 188–202

    [65] Shen Y R. The Principles of Nonlinear Optics. New York: Wiley, 1984

    [66] Lambropoulos P. Mechanisms for multiple ionization of atoms by strong pulsed lasers. Physical Review Letters, 1985, 55(20): 2141–2144

    [67] Perry M D, Landen O L, Szoke A, Campbell E M. Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser. Physical Review A: General Physics, 1988, 37(3): 747–760

    [68] Keldysh L. Ionization in the field of a strong electromagnetic wave. Soviet Physics, JETP, 1965, 20(5): 1307–1314

    [69] AmmosovMV. Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field. Soviet Physics, JETP, 1987, 64: 1191

    [70] Bass M, Barrett H. Avalanche breakdown and the probabilistic nature of laser-induced damage. IEEE Journal of Quantum Electronics, 1972, 8(3): 338–343

    [71] Bloembergen N. Laser-induced electric breakdown in solids. IEEE Journal of Quantum Electronics, 1974, 10(3): 375–386

    [72] Morgan C G. Laser-induced breakdown of gases. Reports on Progress in Physics, 1975, 38(5): 621–665

    [73] Puliafito C, Steinert R. Short-pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations. IEEE Journal of Quantum Electronics, 1984, 20(12): 1442–1448

    [74] Noack J, Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE Journal of Quantum Electronics, 1999, 35(8): 1156–1167

    [75] Williams F, Varma S, Hillenius S. Liquid water as a lone-pair amorphous semiconductor. Journal of Chemical Physics, 1976, 64(4): 1549–1554

    [76] Sacchi C. Laser-induced electric breakdown in water. Journal of the Optical Society of America B, Optical Physics, 1991, 8(2): 337–345

    [77] Feng Q, Moloney J V, Newell A C,Wright EM, Cook K, Kennedy P K, Hammer D X, Rockwell B A, Thompson C R. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses. IEEE Journal of Quantum Electronics, 1997, 33(2): 127–137

    [78] Raizer Y P. Reviews of topical problems: breakdown and heating of gases under the influence of a laser beam. Soviet Physics Uspekhi, 1966, 8(5): 650–673

    [79] Hatanaka K, Ida T, Ono H, Matsushima S, Fukumura H, Juodkazis S, Misawa H. Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses. Optics Express, 2008, 16(17): 12650–12657

    [80] Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190

    [81] Kreb M, Loffler T, Thomson M D, Dorner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331

    [82] Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature, 2007, 450(7173): 1210–1213

    [83] Roskos H, Thomson M, Kreb M, Loffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368

    [84] Oh T, Yoo Y, You Y, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103

    [85] Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182

    [86] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18

    [87] Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001

    [88] Wen H, Lindenberg A M. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902

    [89] Dai J, Zhang X C. Terahertz wave generation from thin metal films excited by asymmetrical optical fields. Optics Letters, 2014, 39(4): 777–780

    [90] Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184

    [91] Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Physical Review Letters, 2007, 99(4): 043901

    [92] Turchinovich D, Hvam J M, Hoffmann M C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear freecarrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304

    [93] Nanni E A, HuangWR, Hong K H, Ravi K, Fallahi A, Moriena G, Dwayne Miller R J, Kartner F X. Terahertz-driven linear electron acceleration. Nature Communications, 2015, 6(1): 8486

    [94] Zhang D, Fallahi A, Hemmer M, Wu X, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H, Kartner F X. Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics, 2018, 12(6): 336–342

    [95] Jin Q, Dai J, E Y, Zhang X C. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Applied Physics Letters, 2018, 113(26): 261101

    [96] Kiran P P, Bagchi S, Krishnan S R, Arnold C L, Kumar G R, Couairon A. Focal dynamics of multiple filaments: microscopic imaging and reconstruction. Physical Review A, 2010, 82(1): 013805

    [97] Liu X L, Lu X, Liu X, Xi T T, Liu F, Ma J L, Zhang J. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Optics Express, 2010, 18(25): 26007–26017

    [98] Jin Q, E Y, Gao S, Zhang X C. Preference of subpicosecond laser pulses for terahertz wave generation from liquids. Advanced Photonics, 2020, 2(1): 015001

    [99] Chin S L. Femtosecond Laser Filamentation. Vol. 55. New York: Springer US, 2010

    [100] Docchio F. Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration. EPL (Europhysics Letters), 1988, 6(5): 407–412

    [101] Feng Q, Wright E M, Moloney J V, Newell A C. Laser-induced breakdown versus self-focusing for focused picosecond pulses in water. Optics Letters, 1995, 20(19): 1958–1960

    [102] Dai J, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117

    [103] Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(7): 1562–1571

    [104] Babushkin I, Kuehn W, Kohler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903

    [105] Bergé L, Skupin S, Kohler C, Babushkin I, Herrmann J. 3D numerical simulations of THz generation by two-color laser filaments. Physical Review Letters, 2013, 110(7): 073901

    [106] Sprangle P, Penano J R, Hafizi B, Kapetanakos C A. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): 066415

    [107] Ponomareva E A, Stumpf S A, Tcypkin A N, Kozlov S A. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation. Optics Letters, 2019, 44(22): 5485–5488

    [108] Tcypkin A N, Ponomareva E A, Putilin S E, Smirnov S V, Shtumpf S A, Melnik M V, E Y, Kozlov S A, Zhang X C. Flat liquid jet as a highly efficient source of terahertz radiation. Optics Express, 2019, 27(11): 15485–15494

    [109] E Y, Jin Q, Zhang X C. Enhancement of terahertz emission by a preformed plasma in liquid water. Applied Physics Letters, 2019, 115(10): 101101

    [110] Ponomareva E A, Tcypkin A N, Smirnov S V, Putilin S E, Yiwen E, Kozlov S A, Zhang X C. Double-pump technique-one step closer towards efficient liquid-based THz sources. Optics Express, 2019, 27(22): 32855–32862

    [111] Huang H H, Nagashima T, Hsu W H, Juodkazis S, Hatanaka K. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials (Basel, Switzerland), 2018, 8(7): 523

    [112] Huang H H, Nagashima T, Yonezawa T, Matsuo Y, Ng S H, Juodkazis S, Hatanaka K. Giant enhancement of THz wave emission under double-pulse excitation of thin water flow. Applied Sciences (Basel, Switzerland), 2020, 10(6): 2031

    Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Frontiers of Optoelectronics, 2021, 14(1): 37
    Download Citation