• Advanced Photonics
  • Vol. 1, Issue 1, 016002 (2019)
Peng Fei1、2、†,*, Jun Nie1, Juhyun Lee3、4, Yichen Ding3、5, Shuoran Li6, Hao Zhang1, Masaya Hagiwara7、8, Tingting Yu2, Tatiana Segura6, Chih-Ming Ho8, Dan Zhu2, and Tzung K. Hsiai3、5、*
Author Affiliations
  • 1Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China
  • 2Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 3University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States
  • 4University of Texas at Arlington, Joint Department of Bioengineering of UT Arlington/UT Southwestern, Arlington, Texas, United States
  • 5University of California, Los Angeles, School of Medicine, Los Angeles, California, United States
  • 6University of California, Los Angeles, Chemical and Biomolecular Engineering Department, Los Angeles, California, United States
  • 7Osaka Prefecture University, Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka, Japan
  • 8University of California, Los Angeles, Mechanical and Aerospace Engineering Department, Los Angeles, California, United States
  • show less
    DOI: 10.1117/1.AP.1.1.016002 Cite this Article Set citation alerts
    Peng Fei, Jun Nie, Juhyun Lee, Yichen Ding, Shuoran Li, Hao Zhang, Masaya Hagiwara, Tingting Yu, Tatiana Segura, Chih-Ming Ho, Dan Zhu, Tzung K. Hsiai. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1): 016002 Copy Citation Text show less

    Abstract

    A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view (FOV). We report a subvoxel light-sheet microscopy (SLSM) method enabling high-throughput volumetric imaging of mesoscale specimens at cellular resolution. A nonaxial, continuous scanning strategy is developed to rapidly acquire a stack of large-FOV images with three-dimensional (3-D) nanoscale shifts encoded. Then, by adopting a subvoxel-resolving procedure, the SLSM method models these low-resolution, cross-correlated images in the spatial domain and can iteratively recover a 3-D image with improved resolution throughout the sample. This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times, with high acquisition speeds of gigavoxels per minute. By fast reconstruction of 3-D cultured cells, intact organs, and live embryos, SLSM method presents a convenient way to circumvent the trade-off between mapping large-scale tissue (>100 mm3) and observing single cell (∼1-μm resolution). It also eliminates the need of complicated mechanical stitching or modulated illumination, using a simple light-sheet setup and fast graphics processing unit-based computation to achieve high-throughput, high-resolution 3-D microscopy, which could be tailored for a wide range of biomedical applications in pathology, histology, neuroscience, etc.
    Supplementary Materials
    Peng Fei, Jun Nie, Juhyun Lee, Yichen Ding, Shuoran Li, Hao Zhang, Masaya Hagiwara, Tingting Yu, Tatiana Segura, Chih-Ming Ho, Dan Zhu, Tzung K. Hsiai. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1): 016002
    Download Citation