• Advanced Photonics
  • Vol. 1, Issue 1, 016002 (2019)
Peng Fei1、2、†,*, Jun Nie1, Juhyun Lee3、4, Yichen Ding3、5, Shuoran Li6, Hao Zhang1, Masaya Hagiwara7、8, Tingting Yu2, Tatiana Segura6, Chih-Ming Ho8, Dan Zhu2, and Tzung K. Hsiai3、5、*
Author Affiliations
  • 1Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China
  • 2Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 3University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States
  • 4University of Texas at Arlington, Joint Department of Bioengineering of UT Arlington/UT Southwestern, Arlington, Texas, United States
  • 5University of California, Los Angeles, School of Medicine, Los Angeles, California, United States
  • 6University of California, Los Angeles, Chemical and Biomolecular Engineering Department, Los Angeles, California, United States
  • 7Osaka Prefecture University, Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka, Japan
  • 8University of California, Los Angeles, Mechanical and Aerospace Engineering Department, Los Angeles, California, United States
  • show less
    DOI: 10.1117/1.AP.1.1.016002 Cite this Article Set citation alerts
    Peng Fei, Jun Nie, Juhyun Lee, Yichen Ding, Shuoran Li, Hao Zhang, Masaya Hagiwara, Tingting Yu, Tatiana Segura, Chih-Ming Ho, Dan Zhu, Tzung K. Hsiai. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1): 016002 Copy Citation Text show less
    References

    [1] S. G. Megason, S. E. Fraser. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev., 120, 1407-1420(2003).

    [2] K. Chung et al. Structural and molecular interrogation of intact biological systems. Nature, 497, 332-337(2013).

    [3] B. Yang et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell, 158, 945-958(2014).

    [4] T. Ragan et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods, 9, 255-258(2012).

    [5] M. Chalfie et al. Green fluorescent protein as a marker for gene expression. Science, 263, 802-805(1994).

    [6] B. R. Masters. Book Review: Handbook of Biological Confocal Microscopy, Second Edition. Edited by J. B. Pawley. Opt. Eng., 35, 2765-2766(1996).

    [7] J. W. Lichtman, J. A. Conchello. Fluorescence microscopy. Nat. Methods, 2, 910-919(2005).

    [8] R. M. Power, J. Huisken. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods, 14, 360-373(2017).

    [9] J. Huisken et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007-1009(2004).

    [10] P. J. Keller et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065-1069(2008).

    [11] P. J. Keller et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods, 7, 637-642(2010).

    [12] B. C. Chen et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [13] M. B. Ahrens et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods, 10, 413-420(2013).

    [14] E. A. Susaki et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell, 157, 726-739(2014).

    [15] P. J. Keller, M. B. Ahrens. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron, 85, 462-483(2015).

    [16] N. Vladimirov et al. Light-sheet functional imaging in fictively behaving zebrafish. Nat. Methods, 11, 883-884(2014).

    [17] T. F. Holekamp, D. Turaga, T. E. Holy. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron, 57, 661-672(2008).

    [18] H.-U. Dodt et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods, 4, 331(2007).

    [19] J. Lee et al. 4-dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J. Clin. Invest., 126, 1679-1690(2016).

    [20] P. Fei et al. Cardiac light-sheet fluorescent microscopy for multi-scale and rapid imaging of architecture and function. Sci. Rep., 6, 22489(2016).

    [21] Z. Guan et al. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope. Biomed. Opt. Express, 7, 194-208(2016).

    [22] R. Tomer et al. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protocols, 9, 1682-1697(2014).

    [23] Y. Ding et al. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Sci. Rep., 7, 42209(2017).

    [24] A. W. Lohmann et al. Space-bandwidth product of optical signals and systems. J. Opt. Soc. Am. A, 13, 470-473(1996).

    [25] M. Brown, D. G. Lowe. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision, 74, 59-73(2007).

    [26] R. Szeliski. Image alignment and stitching: a tutorial. Found. Trends Comput. Graphics Vision, 2, 1-104(2006).

    [27] P. A. Santi et al. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. BioTechniques, 46, 287-294(2009).

    [28] J. A. Buytaert, J. J. Dirckx. Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning. Appl. Opt., 48, 941-948(2009).

    [29] A. K. Glaser et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng., 1, 0084(2017).

    [30] A. M. Maiden, J. M. Rodenburg, M. J. Humphry. Optical ptychography: a practical implementation with useful resolution. Opt. Lett., 35, 2585-2587(2010).

    [31] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [32] T. R. Hillman et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express, 17, 7873-7892(2009).

    [33] C. Fangyen et al. High-speed synthetic aperture microscopy for live cell imaging. Opt. Lett., 36, 148-150(2011).

    [34] T. Gutzler et al. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue. Opt. Lett., 35, 1136-1138(2010).

    [35] W. Luo et al. Synthetic aperture-based on-chip microscopy. Light: Sci. Appl., 4, e261(2015).

    [36] G. Zheng et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip, 10, 3125-3129(2010).

    [37] G. Zheng et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. U. S. A., 108, 16889-16894(2011).

    [38] W. Luo et al. Pixel super-resolution using wavelength scanning. Light Sci. Appl., 5, e16060(2016).

    [39] W. Xu et al. Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. U. S. A., 98, 11301-11305(2001).

    [40] L. Denis et al. Inline hologram reconstruction with sparsity constraints. Opt. Lett., 34, 3475-3477(2009).

    [41] A. Greenbaum et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep., 3, 1717(2013).

    [42] M. Elad, Y. Hel-Or. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process., 10, 1187-1193(2001).

    [43] S. Farsiu et al. Fast and robust multiframe super resolution. IEEE Trans. Image Process., 13, 1327-1344(2004).

    [44] P. Vandewalle, S. Süsstrunk, M. Vetterli. A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Adv. Signal Process., 2006, 1-15(2006).

    [45] A. Greenbaum, U. Sikora, A. Ozcan. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging. Lab Chip, 12, 1242-1245(2012).

    [46] J. Swoger et al. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express, 15, 8029-8042(2007).

    [47] A. Diaspro, F. Federici, M. Robello. Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl. Opt., 41, 685-690(2002).

    [48] M. Born, E. Wolf(2013).

    [49] D. S. Wan, M. Rajadhyaksha, R. Webb. Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40. J. Microsc., 197, 274-284(2000).

    [50] S. Preibisch et al. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods, 7, 418-419(2010).

    [51] G. Paxinos, K. B. Franklin(2004).

    [52] S. Preibisch et al. Efficient Bayesian-based multiview deconvolution. Nat. Methods, 11, 645-648(2014).

    [53] C. Pan et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods, 13, 859-867(2016).

    CLP Journals

    [1] Chang Ling, Chonglei Zhang, Mingqun Wang, Fanfei Meng, Luping Du, Xiaocong Yuan. Fast structured illumination microscopy via deep learning[J]. Photonics Research, 2020, 8(8): 1350

    [2] Ying Li, Jianglei Di, Li Ren, Jianlin Zhao. Deep-learning-based prediction of living cells mitosis via quantitative phase microscopy[J]. Chinese Optics Letters, 2021, 19(5): 051701

    [3] Chaohao Chen, Zhen Liu, Dayong Jin. Bypassing the limit in volumetric imaging of mesoscale specimens[J]. Advanced Photonics, 2019, 1(2): 020502

    Peng Fei, Jun Nie, Juhyun Lee, Yichen Ding, Shuoran Li, Hao Zhang, Masaya Hagiwara, Tingting Yu, Tatiana Segura, Chih-Ming Ho, Dan Zhu, Tzung K. Hsiai. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1): 016002
    Download Citation