• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 1, 7 (2021)
Hong-Bo LU1、2、3, Xin-Yi LI2、*, Ge LI2, Wei ZHANG2, Shu-Hong HU1, Ning DAI1、*, and Gui-Ting YANG2
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technology Physics of the Chinese Academy of Sciences,Shanghai 200083,China
  • 2State Key Laboratory of Space Power-sources,Shanghai Institute of Space Power-sources,Shanghai 200245,China
  • 3University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.01.002 Cite this Article
    Hong-Bo LU, Xin-Yi LI, Ge LI, Wei ZHANG, Shu-Hong HU, Ning DAI, Gui-Ting YANG. Reducing Voc loss in InGaAsP/InGaAs dual-junction solar cells[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 7 Copy Citation Text show less
    References

    [1] D. Frank, M. Grave, P. Beutel et al. Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt: Res. Appl., 22, 277-282(2014).

    [2] R. Oshima, K. Makita, H. Mizuno et al. MBE-grown InGaAsP solar cells with 1.0 eV bandgap on InP (001) substrates for application to multijunction solar cells. Japanese Journal of Applied Physics, 14-14(2015).

    [3] Y. Wu, L. Ji, P. Dai et al. Effects of buffer layer and back-surface field on MBE-grown InGaAsP/InGaAs solar cells. Japanese Journal of Applied Physics, 55, 022301-4(2016).

    [4] Y. Zhao, J. Dong, K. Li et al. InGaAsP/InGaAs tandem photovoltaic devices for four-junction solar cells. Journal of Semiconductors, 36, 044011-4(2015).

    [5] R. R. King, D. Bhusari, A. Boca et al. Band gap-voltage offset and energy production in next-generation multijunction solar cells. Prog. Photovolt: Res. Appl., 19, 797-812(2011).

    [6] John Brice et al. Properties of INDIUM PHOSPHIDE, 6, 280-281(1991).

    [7] H Lu, X Li, W Zhang et al. MOVPE grown 1.0 eV InGaAsP solar cells with bandgap-voltage offset near to ideal radiative recombination limit. Solar Energy Materials and Solar Cells, 196, 65-69(2019).

    [8] M Boulou, D Bois. Cathodoluminescence measurements of the minority‐carrier lifetime in semiconductors. Journal of Applied Physics, 48, 4713-4721(1977).

    [9] R. K. Ahenkiel, M. S. Lundstrom. Minority Carriers in III-V Semiconductors: Physics and Applications, Semiconductors and Semimetals. Academic Press, Inc., 39, 57-59(1993).

    [10] D. Schroeder. Modelling of Interface Carrier Transport For Device Simulation, 166(1994).

    [11] S. Adachi. Physical Properties Of III-V Semiconductor Compound, 75-109(1992).

    [12] R L Ross, S P Svensson, P Lugli. Pseudomorphic HEMT Technology and Applications(1996).

    [13] D H Zhu, Z G Wang, J B Liang et al. 808 nm high-power laser grown by MBE through the control of Be diffusion and use of superlattice. JOURNAL OF CRYSTAL GROWTH, 175, 1004-1008(1997).

    [14] R V Chelakara, M R Islam, J G Neff et al. Growth of high-quality InAlP/InGaP quantum wells and InAlP/InGaP superlattice barrier cladding layers by metalorganic chemical vapor deposition. Journal of Crystal Growth, 145, 179-186(1994).

    [15] M E Givens, L J Mawst, C A Zmudzinski et al. Effect of compositionally graded and superlattice buffer layers on the device performance of graded barrier quantum well heterostructure laser diodes. Applied Physics Letters, 50, 301-303(1987).

    [16] J Zhang, X Y Chen, Y J Ma et al. Optimization of In0.6Ga0.4As/InAs electron barrier for In0.74Ga0.26As detectors grown by molecular beam epitaxy. Journal of Crystal Growth, 512, 84-89(2019).

    [17] John H Davis. The Physics of Low-Dimensional Semiconductors, 177-182(2005).

    Hong-Bo LU, Xin-Yi LI, Ge LI, Wei ZHANG, Shu-Hong HU, Ning DAI, Gui-Ting YANG. Reducing Voc loss in InGaAsP/InGaAs dual-junction solar cells[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 7
    Download Citation