• Chinese Journal of Lasers
  • Vol. 51, Issue 13, 1317001 (2024)
Xiafei Ma1,2,3, Kaiyuan Yang1,2,3,4, Haotong Ma1,2,3,*, Hu Yang1,2,3, and Zongliang Xie1,2,3,**
Author Affiliations
  • 1National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan , China
  • 2Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, Sichuan , China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610209, Sichuan , China
  • show less
    DOI: 10.3788/CJL231164 Cite this Article Set citation alerts
    Xiafei Ma, Kaiyuan Yang, Haotong Ma, Hu Yang, Zongliang Xie. Research on Co‐Phasing Closed‐Loop Experiment for Optical Synthetic Aperture Using Deep Learning[J]. Chinese Journal of Lasers, 2024, 51(13): 1317001 Copy Citation Text show less
    References

    [1] Gunturk B K, Miller N J, Watson E A. Camera phasing in multi-aperture coherent imaging[J]. Optics Express, 20, 11796-11805(2012).

    [2] Rabb D, Jameson D, Stokes A et al. Distributed aperture synthesis[J]. Optics Express, 18, 10334-10342(2010).

    [3] Dente G C, Tilton M L. Segmented mirror phasing using the focal-plane intensity[J]. Applied Optics, 51, 295-301(2012).

    [4] Gibbard S G, MacIntosh B, Gavel D et al. Titan: high-resolution speckle images from the Keck Telescope[J]. Icarus, 139, 189-201(1999).

    [5] Chu C Y, Liu Z T, Chen M L et al. Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry[J]. Opto-Electronic Advances, 6, 230017(2023).

    [6] Chanan G, Troy M, Dekens F et al. Phasing the mirror segments of the Keck Telescopes: the broadband phasing algorithm[J]. Applied Optics, 37, 140-155(1998).

    [7] Chanan G, Ohara C, Troy M. Phasing the mirror segments of the Keck Telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 39, 4706-4714(2000).

    [8] van Dam M A, McLeod B A, Bouchez A H. Dispersed fringe sensor for the Giant Magellan Telescope[J]. Applied Optics, 55, 539-547(2016).

    [9] Zhang X F, Dong B, Huang Y F et al. Simulation research on wavefront sensing and correction algorithms for segmented space telescope[J]. Acta Optica Sinica, 29, 7-11(2009).

    [10] Meng Y H, Xu S Y, Xu B Q. Method of segmented mirror co-phasing based on dispersed fringe sensing technology[J]. Acta Optica Sinica, 36, 0911006(2016).

    [11] Chamot S R, Dainty C, Esposito S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor[J]. Optics Express, 14, 518-526(2006).

    [12] Esposito S, Pinna E, Puglisi A et al. Pyramid sensor for segmented mirror alignment[J]. Optics Letters, 30, 2572-2574(2005).

    [13] Yan Z J, Zheng L X, Wang C Y et al. Application of pyramid sensor for co-phasing space optical interferometric telescope[J]. Acta Photonica Sinica, 47, 1128002(2018).

    [14] Paxman R G, Fienup J R. Optical misalignment sensing and image reconstruction using phase diversity[J]. Journal of the Optical Society of America A, 5, 914-923(1988).

    [15] Lee D J, Roggemann M C, Welsh B M et al. Evaluation of least-squares phase-diversity technique for space telescope wave-front sensing[J]. Applied Optics, 36, 9186-9197(1997).

    [16] Yang H Z, Gong C L, Li Y Q. Effects of kind and size of filter function on phase retrieval for the wavefront sensor based on pupil phase diversity[J]. Chinese Journal of Lasers, 38, s114002(2011).

    [17] Gilles L, Vogel C R, Bardsley J M. Computational methods for a large-scale inverse problem arising in atmospheric optics[J]. Inverse Problems, 18, 237-252(2002).

    [18] Paxman R G, Schulz T J, Fienup J R. Joint estimation of object and aberrations by using phase diversity[J]. Journal of the Optical Society of America A, 9, 1072-1085(1992).

    [19] Paykin I, Yacobi L, Adler J et al. Phasing a segmented telescope[J]. Physical Review E, 91, 023302(2015).

    [20] Pu J, Gui J B, Zhang K. Multiscale digital hologram reconstruction based on deep learning[J]. Laser & Optoelectronics Progress, 59, 0209001(2022).

    [21] Liu J X, Ban W, Chen Y et al. Multi-dimensional CNN fused algorithm for hyperspectral remote sensing image classification[J]. Chinese Journal of Lasers, 48, 1610003(2021).

    [22] Hu Y W, Liu X, Kuang C F et al. Research progress and prospect of adaptive optics based on deep learning[J]. Chinese Journal of Lasers, 50, 1101009(2023).

    [23] Guo Y M, Zhong L B, Min L et al. Adaptive optics based on machine learning: a review[J]. Opto-Electronic Advances, 5, 200082(2022).

    [24] Liu K X, Wu J C, He Z H et al. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography[J]. Opto-Electronic Advances, 6, 220135(2023).

    [25] Guerra-Ramos D, Díaz-García L, Trujillo-Sevilla J et al. Piston alignment of segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 43, 4264-4267(2018).

    [26] Hui M, Li W Q, Liu M et al. Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network[J]. Applied Optics, 59, 771-778(2020).

    [27] Wang Y R, Jiang F Y, Ju G H et al. Deep learning wavefront sensing for fine phasing of segmented mirrors[J]. Optics Express, 29, 25960-25978(2021).

    [28] Zhao W R, Wang H, Zhang L et al. High-precision co-phase method for segments based on a convolutional neural network[J]. Acta Physica Sinica, 71, 164202(2022).

    [29] Ma X F, Xie Z L, Ma H T et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 27, 16058-16070(2019).

    [30] Ma X F, Xie Z L, Ma H T et al. Deep learning piston sensing for sparse aperture systems with simulated training data[J]. IEEE Photonics Journal, 14, 7444005(2022).

    [31] Li B, Yang A K, Sun Z X et al. Research on co-phasing detection new method of segmented mirror based on deep learning[J]. Chinese Journal of Lasers, 50, 2204001(2023).

    [32] Howard A G, Zhu M L, Chen B et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. https:∥arxiv.org/abs/1704.04861

    Xiafei Ma, Kaiyuan Yang, Haotong Ma, Hu Yang, Zongliang Xie. Research on Co‐Phasing Closed‐Loop Experiment for Optical Synthetic Aperture Using Deep Learning[J]. Chinese Journal of Lasers, 2024, 51(13): 1317001
    Download Citation