• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 4, 561 (2021)
Ding-Yang XU, Li HAN, Huai-Zhong XING*, and Jun-Hao CHU
Author Affiliations
  • College of Science, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.04.016 Cite this Article
    Ding-Yang XU, Li HAN, Huai-Zhong XING, Jun-Hao CHU. Plasmon-induced transparency in π-cascade structure of phosphorene[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 561 Copy Citation Text show less

    Abstract

    Phosphorene provides a new choice for the construction of optoelectronic devices based on two-dimensional materials because of its adjustable band gap, high carrier mobility and in-plane anisotropy. Plasmon-induced transparency in the π-cascade and compact structure of phosphorene was numerically simulated by the finite difference time domain method. By changing the structure distribution and Fermi energy level of phosphorene and other parameters, a wide range of tunable plasmon-induced transparency from mid-infrared to far-infrared was realized. Among them, the number, intensity and position of transparent windows are flexibly modulated. In addition, the sensitivity of induced transparent window to the angle of polarization is studied. The results provide a reference for the development of biosensors, photo-detectors and optical switches based on the surface plasmon of phosphorene.
    Ding-Yang XU, Li HAN, Huai-Zhong XING, Jun-Hao CHU. Plasmon-induced transparency in π-cascade structure of phosphorene[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 561
    Download Citation