• Advanced Photonics
  • Vol. 3, Issue 5, 055003 (2021)
Jinqi Wu1, Rui Su1、*, Antonio Fieramosca1, Sanjib Ghosh1, Jiaxin Zhao1, Timothy C. H. Liew1、2、*, and Qihua Xiong3、4、5、*
Author Affiliations
  • 1Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Singapore
  • 2MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d’Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore
  • 3Tsinghua University, State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Beijing, China
  • 4Beijing Academy of Quantum Information Sciences, Beijing, China
  • 5Tsinghua University, Beijing Innovation Center for Future Chips, Beijing, China
  • show less
    DOI: 10.1117/1.AP.3.5.055003 Cite this Article Set citation alerts
    Jinqi Wu, Rui Su, Antonio Fieramosca, Sanjib Ghosh, Jiaxin Zhao, Timothy C. H. Liew, Qihua Xiong. Perovskite polariton parametric oscillator[J]. Advanced Photonics, 2021, 3(5): 055003 Copy Citation Text show less
    References

    [1] J. A. Giordmaine, R. C. Miller. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett., 14, 973-976(1965). https://doi.org/10.1103/PhysRevLett.14.973

    [2] L.-A. Wu et al. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57, 2520-2523(1986).

    [3] H. Jabri, H. Eleuch. Interaction of a dipolariton system with squeezed light from a parametric down-conversion process. Phys. Rev. A, 101, 053819(2020).

    [4] M. Förtsch et al. A versatile source of single photons for quantum information processing. Nat. Commun., 4, 1818(2013).

    [5] X. Guo et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl., 6, e16249(2017).

    [6] X. Lu et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys., 15, 373-381(2019).

    [7] T. Inagaki et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photonics, 10, 415-419(2016).

    [8] A. W. Bruch et al. On-chip χ(2) microring optical parametric oscillator. Optica, 6, 1361-1366(2019). https://doi.org/10.1364/OPTICA.6.001361

    [9] I. Breunig. Three-wave mixing in whispering gallery resonators. Laser Photonics Rev., 10, 569-587(2016).

    [10] Z.-G. Lin, L.-C. Tang, C.-P. Chou. Characterization and properties of novel infrared nonlinear optical crystal CsGe(BrxCl1x)3. Inorg. Chem., 47, 2362-2367(2008). https://doi.org/10.1021/ic7011777

    [11] J. Xu et al. Halide perovskites for nonlinear optics. Adv. Mater., 32, 1806736(2020).

    [12] Y. Zhou et al. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev., 7, 041313(2020).

    [13] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [14] J. U. Fürst et al. Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett., 105, 263904(2010).

    [15] T. Beckmann et al. Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett., 106, 143903(2011).

    [16] N. L. B. Sayson et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics, 13, 701-706(2019).

    [17] X. Lu et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica, 6, 1535-1541(2019).

    [18] J. Lu et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).

    [19] C. Trovatello et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat. Photonics, 15, 6-10(2021).

    [20] H. Deng, H. Haug, Y. Yamamoto. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys., 82, 1489-1537(2010).

    [21] T. Byrnes, N. Y. Kim, Y. Yamamoto. Exciton–polariton condensates. Nat. Phys., 10, 803-813(2014).

    [22] D. Sanvitto, S. Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 15, 1061-1073(2016).

    [23] J. J. Baumberg et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B, 62, R16247-R16250(2000).

    [24] P. G. Savvidis et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett., 84, 1547-1550(2000).

    [25] M. Saba et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature, 414, 731-735(2001).

    [26] G. Dasbach et al. Polarization inversion via parametric scattering in quasi-one-dimensional microcavities. Phys. Rev. B, 71, 161308(2005).

    [27] C. Diederichs et al. Parametric oscillation in vertical triple microcavities. Nature, 440, 904-907(2006).

    [28] A. S. Kuznetsov et al. Dynamically tuned arrays of polariton parametric oscillators. Optica, 7, 1673-1681(2020).

    [29] V. Ardizzone et al. Bunching visibility of optical parametric emission in a semiconductor microcavity. Phys. Rev. B, 86, 041301(2012).

    [30] T. Lecomte et al. Optical parametric oscillation in one-dimensional microcavities. Phys. Rev. B, 87, 155302(2013).

    [31] W. Xie et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett., 108, 166401(2012).

    [32] J. Wu et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett., 21, 3120-3126(2021).

    [33] L. N. Quan et al. Perovskites for light emission. Adv. Mater., 30, 1801996(2018).

    [34] J. Xing et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 10, 6623-6630(2016).

    [35] S. A. Veldhuis et al. Perovskite materials for light-emitting diodes and lasers. Adv. Mater., 28, 6804-6834(2016).

    [36] Q. Zhang et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett., 21, 1903-1914(2021).

    [37] M. Ahmadi, T. Wu, B. Hu. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater., 29, 1605242(2017).

    [38] K. N. Krishnakanth et al. Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals. Opt. Lett., 43, 603-606(2018). https://doi.org/10.1364/OL.43.000603

    [39] F. Zhou et al. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater., 31, 1904155(2019).

    [40] L. Wu et al. Perovskite CsPbX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater., 6, 1800400(2018). https://doi.org/10.1002/adom.201800400

    [41] R. Su et al. Room-temperature polariton lasing in all-Inorganic perovskite nanoplatelets. Nano Lett., 17, 3982-3988(2017).

    [42] R. Su et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv., 4, eaau0244(2018).

    [43] R. Su et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater., 20, 1315-1324(2021).

    [44] R. Su et al. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv., 7, eabf8049(2021).

    [45] A. Fieramosca et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 5, eaav9967(2019).

    [46] M. Romanelli et al. Four wave mixing oscillation in a semiconductor microcavity: generation of two correlated polariton populations. Phys. Rev. Lett., 98, 106401(2007).

    [47] S. T. Ha et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater., 2, 838-844(2014).

    [48] Q. Zhang et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 26, 6238-6245(2016).

    [49] D. M. Whittaker. Effects of polariton-energy renormalization in the microcavity optical parametric oscillator. Phys. Rev. B, 71, 115301(2005).

    [50] P. G. Lagoudakis et al. Stimulated spin dynamics of polaritons in semiconductor microcavities. Phys. Rev. B, 65, 161310(2002).

    [51] R. Su et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys., 16, 301-306(2020).

    CLP Journals

    [1] Tianju Zhang, Chaocheng Zhou, Jia Lin, Jun Wang. Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites[J]. Chinese Optics Letters, 2022, 20(2): 021602

    Jinqi Wu, Rui Su, Antonio Fieramosca, Sanjib Ghosh, Jiaxin Zhao, Timothy C. H. Liew, Qihua Xiong. Perovskite polariton parametric oscillator[J]. Advanced Photonics, 2021, 3(5): 055003
    Download Citation