• Chinese Optics Letters
  • Vol. 18, Issue 7, 070901 (2020)
Hiromi Sannomiya1, Naoki Takada2、*, Kohei Suzuki1, Tomoya Sakaguchi1, Hirotaka Nakayama3, Minoru Oikawa2, Yuichiro Mori2, Takashi Kakue4, Tomoyoshi Shimobaba4, and Tomoyoshi Ito4
Author Affiliations
  • 1Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
  • 2Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
  • 3National Astronomical Observatory of Japan, Mitaka 181-8588, Japan
  • 4Graduate School of Engineering, Chiba University, Inage-ku 263-8522, Japan
  • show less
    DOI: 10.3788/COL202018.070901 Cite this Article Set citation alerts
    Hiromi Sannomiya, Naoki Takada, Kohei Suzuki, Tomoya Sakaguchi, Hirotaka Nakayama, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito. Real-time spatiotemporal division multiplexing electroholography for 1,200,000 object points using multiple-graphics processing unit cluster[J]. Chinese Optics Letters, 2020, 18(7): 070901 Copy Citation Text show less

    Abstract

    Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional (3D) holographic video from a point-cloud model comprising a huge number of object points. To solve these problems, we implement herein a spatiotemporal division multiplexing method on a cluster system with 13 GPUs connected by a gigabit Ethernet network. A performance evaluation indicates that the proposed method can realize a real-time holographic video of a 3D object comprising ~1,200,000 object points. These results demonstrate a clear 3D holographic video at 32.7 frames per second reconstructed from a 3D object comprising 1,064,462 object points.
    Supplementary Materials
    Hiromi Sannomiya, Naoki Takada, Kohei Suzuki, Tomoya Sakaguchi, Hirotaka Nakayama, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito. Real-time spatiotemporal division multiplexing electroholography for 1,200,000 object points using multiple-graphics processing unit cluster[J]. Chinese Optics Letters, 2020, 18(7): 070901
    Download Citation