• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0100001 (2022)
Chao Liu1, Xiaowei Guo1、2、*, Shaorong Li1, and Yuan Gao1
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu , Sichuan 610054, China
  • 2Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou , Zhejiang 313001, China
  • show less
    DOI: 10.3788/LOP202259.0100001 Cite this Article Set citation alerts
    Chao Liu, Xiaowei Guo, Shaorong Li, Yuan Gao. Theory and Application of Edge States in Topological Photonic Crystals[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100001 Copy Citation Text show less
    References

    [1] Zhang L, Yang D X, Chen K et al. Design of nonreciprocal waveguide devices based on two-dimensional magneto-optical photonic crystals[J]. Optics & Laser Technology, 50, 195-201(2013).

    [2] He L, Gao Y F, Jiang Z et al. A unidirectional air waveguide basing on coupling of two self-guiding edge modes[J]. Optics & Laser Technology, 108, 265-272(2018).

    [3] von Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance[J]. Physical Review Letters, 45, 494-497(1980).

    [4] Niu Q, Thouless D J, Wu Y S. Quantized Hall conductance as a topological invariant[J]. Physical Review B, 31, 3372-3377(1985).

    [5] Thouless D J, Kohmoto M, Nightingale M P et al. Quantized hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 49, 405-408(1982).

    [6] Fradkin E, Kohmoto M. Quantized Hall effect and geometric localization of electrons on lattices[J]. Physical Review B, 35, 6017-6023(1987).

    [7] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).

    [8] Hatsugai Y. Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 71, 3697-3700(1993).

    [9] Yan X Z, Ting C S. Integer quantum Hall effect of interacting electrons in graphene[J]. Physical Review B, 95, 075107(2017).

    [10] Christiansen R E, Wang F W, Sigmund O et al. Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization[J]. Nanophotonics, 8, 1363-1369(2019).

    [11] Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators[J]. Physical Review B, 78, 195424(2008).

    [12] Barik S, Karasahin A, Flower C et al. A topological quantum optics interface[J]. Science, 359, 666-668(2018).

    [13] Gao F, Xue H R, Yang Z J et al. Topologically protected refraction of robust kink states in valley photonic crystals[J]. Nature Physics, 14, 140-144(2018).

    [14] Deng F S, Sun Y, Liu Y H et al. Valley Hall effect induced by pseudomagnetic field in distorted photonic graphene[J]. Acta Physica Sinica, 66, 144204(2017).

    [15] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [16] Khanikaev A B, Shvets G. Two-dimensional topological photonics[J]. Nature Photonics, 11, 763-773(2017).

    [17] Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics[J]. Light, Science & Applications, 9, 130(2020).

    [18] Ota Y, Takata K, Ozawa T et al. Active topological photonics[J]. Nanophotonics, 9, 547-567(2020).

    [19] Yang P L, Jiang P P, Guo X W et al. Topologically protected Mach-Zehnder interferometer[J]. Journal of Optics, 22, 105001(2020).

    [20] Wang H F, Xie B Y, Zhan P et al. Research progress of topological photonics[J]. Acta Physica Sinica, 68, 20191437(2019).

    [21] Slobozhanyuk A, Mousavi S H, Ni X et al. Three-dimensional all-dielectric photonic topological insulator[J]. Nature Photonics, 11, 130-136(2017).

    [22] Lu L, Fang C, Fu L et al. Three-dimensional topological photonic crystal with a single surface Dirac cone[EB/OL]. https:∥arxiv.org/abs/1507.00337

    [23] Zilberberg O, Huang S, Guglielmon J et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics[J]. Nature, 553, 59-62(2018).

    [24] Yuan L Q, Xiao M, Lin Q et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation[J]. Physical Review B, 97, 104105(2018).

    [25] Ochiai T. Gapless surface states originating from accidentally degenerate quadratic band touching in a three-dimensional tetragonal photonic crystal[J]. Physical Review A, 96, 043842(2017).

    [26] Yan Z B. Higher-order topological insulators and superconductors[J]. Acta Physica Sinica, 68, 20191101(2019).

    [27] Liu H, Yan Z W, Xiao M et al. Recent progress in synthetic dimension in topological photonics[J]. Acta Optica Sinica, 41, 0123002(2021).

    [28] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene[J]. Physical Review Letters, 42, 1698-1701(1979).

    [29] Xiao M, Zhang Z Q, Chan C T. Surface impedance and bulk band geometric phases in one-dimensional systems[J]. Physical Review X, 4, 021017(2014).

    [30] Yang K L. Study on topological phase and domain wall fractional charge of one-dimensional topological insulator-SSH mode[D](2016).

    [31] Asbóth J K, Oroszlány L, Pályi A J P. A short course on topological insulators: band-structure topology and edge states in one and two dimensions[EB/OL]. https:∥arxiv.org/abs/1509.02295

    [32] Esaki K, Sato M, Hasebe K et al. Edge states and topological phases in non-Hermitian systems[J]. Physical Review B, 84, 205128(2011).

    [33] Gong Z P, Ashida Y, Kawabata K et al. Topological phases of non-Hermitian systems[J]. Physical Review X, 8, 031079(2018).

    [34] Martinez Alvarez V M, Barrios Vargas J E, Berdakin M et al. Topological states of non-Hermitian systems[J]. The European Physical Journal Special Topics, 227, 1295-1308(2018).

    [35] Song W G, Sun W Z, Chen C et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices[J]. Physical Review Letters, 123, 165701(2019).

    [36] Lee T E. Anomalous edge state in a non-Hermitian lattice[J]. Physical Review Letters, 116, 133903(2016).

    [37] Feng L, Zhao H, Qiao X D et al. Non-Hermitian topological light steering[J]. Proceedings of SPIE, 11461, 114610S(2020).

    [38] von Klitzing K. The quantized Hall effect[J]. Reviews of Modern Physics, 58, 519-531(1986).

    [39] Haldane F D M. Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”[J]. Physical Review Letters, 61, 2015-2018(1988).

    [40] Ozawa T, Price H M, Amo A et al. Topological photonics[EB/OL]. https:∥arxiv.org/abs/1802.04173v1

    [41] Bernevig B A, Hughes T L[M]. Topological insulators and topological superconductors(2013).

    [42] Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 95, 146802(2005).

    [43] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 95, 226801(2005).

    [44] Sheng D N, Weng Z Y, Sheng L et al. Quantum spin-Hall effect and topologically invariant Chern numbers[J]. Physical Review Letters, 97, 036808(2006).

    [45] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 75, 121306(2007).

    [46] Bellec M, Kuhl U, Montambaux G et al. Topological transition of Dirac points in a microwave experiment[J]. Physical Review Letters, 110, 033902(2013).

    [47] Fu L. Topological crystalline insulators[J]. Physical Review Letters, 106, 106802(2011).

    [48] Fang Y T, Wang Z X, Fan E P et al. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states[J]. Acta Physica Sinica, 69, 20200415(2020).

    [49] Jiang Z, Gao Y F, He L et al. Manipulation of pseudo-spin guiding and flat bands for topological edge states[J]. Physical Chemistry Chemical Physics, 21, 11367-11375(2019).

    [50] Xiao D, Yao W, Niu Q. Valley-contrasting physics in graphene: magnetic moment and topological transport[J]. Physical Review Letters, 99, 236809(2007).

    [51] Lee K W, Lee C E. Quantum valley Hall effect in wide-gap semiconductor SiC monolayer[J]. Scientific Reports, 10, 5044(2020).

    [52] Tang G J, Chen X D, Dong J W. Valley photonic crystals and topological propagation of light[J]. Physics, 48, 376-384(2019).

    [53] Zhao H, Miao P, Teimourpour M H et al. Topological hybrid silicon microlasers[J]. Nature Communications, 9, 981(2018).

    [54] St-Jean P, Goblot V, Galopin E et al. Lasing in topological edge states of a one-dimensional lattice[J]. Nature Photonics, 11, 651-656(2017).

    [55] Parto M, Wittek S, Hodaei H et al. Edge-mode lasing in 1D topological active arrays[J]. Physical Review Letters, 120, 113901(2018).

    [56] Bandres M A, Harari G, Wittek S et al. Topological insulator lasers[C], NF2A.1(2017).

    [57] Harari G, Bandres M A, Lumer Y et al. Topological insulator laser: theory[J]. Science, 359, eaar4003(2018).

    [58] Hafezi M, Demler E A, Lukin M D et al. Robust optical delay lines with topological protection[J]. Nature Physics, 7, 907-912(2011).

    [59] Bahari B, Ndao A, Vallini F et al. Nonreciprocal lasing in topological cavities of arbitrary geometries[J]. Science, 358, 636-640(2017).

    [60] Zeng Y, Chattopadhyay U, Zhu B et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 578, 246-250(2020).

    [61] Shao Z K, Chen H Z, Wang S et al. A high-performance topological bulk laser based on band-inversion-induced reflection[J]. Nature Nanotechnology, 15, 67-72(2020).

    [62] Kivshar Y. All-dielectric meta-optics and non-linear nanophotonics[J]. National Science Review, 5, 144-158(2018).

    [63] Smirnova D, Tripathi A, Kruk S et al. Room-temperature lasing from nanophotonic topological cavities[J]. Light: Science & Applications, 9, 127(2020).

    [64] Tambasco J L, Corrielli G, Chapman R J et al. Quantum interference of topological states of light[EB/OL]. https:∥arxiv.org/abs/1904.10612

    [65] He X T, Liang E T, Yuan J J et al. A silicon-on-insulator slab for topological valley transport[J]. Nature Communications, 10, 872(2019).

    [66] Yang Y H, Yamagami Y, Yu X B et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 14, 446-451(2020).

    [67] Zhang L, Xiao S S. Design of terahertz reconfigurable devices by locally controlling topological phases of square gyro-electric rod arrays[J]. Optical Materials Express, 9, 544-554(2019).

    [68] Slobozhanyuk A P, Khanikaev A B, Filonov D S et al. Experimental demonstration of topological effects in bianisotropic metamaterials[J]. Scientific Reports, 6, 22270(2016).

    [69] Khanikaev A B, Mousavi S H, Tse W K et al. Photonic topological insulators[J]. Nature Materials, 12, 233-239(2013).

    [70] Zhu X Y, Gupta S K, Sun X C et al. Z2 topological edge state in honeycomb lattice of coupled resonant optical waveguides with a flat band[J]. Optics Express, 26, 24307-24317(2018).

    [71] Ao Y, Hu X, You Y et al. Topological phase transition in the non-Hermitian coupled resonator array[J]. Physical Review Letters, 125, 013902(2020).

    [72] Gao H, Wei G G, Miao C et al. Ultra-narrow unidirectional transmission filter assisted by topological interface state in one-dimensional photonic crystal heterostructure[J]. Journal of Optics, 48, 393-399(2019).

    [73] Yin X, Jin J, Soljačić M et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 580, 467-471(2020).

    Chao Liu, Xiaowei Guo, Shaorong Li, Yuan Gao. Theory and Application of Edge States in Topological Photonic Crystals[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100001
    Download Citation