• Chinese Optics Letters
  • Vol. 19, Issue 6, 060012 (2021)
Yang Li1, Zhijin Huang1, Wentao Qiu1, Jiangli Dong2, Heyuan Guan2、*, and Huihui Lu1、**
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
  • 2Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
  • show less
    DOI: 10.3788/COL202119.060012 Cite this Article Set citation alerts
    Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012 Copy Citation Text show less
    References

    [1] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7, 118(1961).

    [2] L. P. Gonzalez, D. C. Upchurch, P. G. Schunemann, L. Mohnkern, S. Guha. Second-harmonic generation of a tunable continuous-wave CO2 laser in orientation-patterned GaAs. Opt. Lett., 38, 320(2013).

    [3] Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, X. Chen. On-chip erbium-doped lithium niobate microcavity laser. Sci. Chin. Phys. Mech. Astron., 64, 234262(2020).

    [4] S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, E. Ubyivovk, D. A. Smirnova, S. Starikov, B. N. Chichkov, Y. S. Kivshar. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett., 17, 3047(2017).

    [5] Y. Qiao, Y. Peng, Y. Zheng, F. Ye, X. Chen. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping. Opt. Lett., 42, 1895(2017).

    [6] M. Yu, L. Shao, Y. Okawachi, A. L. Gaeta, M. Loncar. Ultraviolet to mid-infrared supercontinuum generation in lithium-niobate waveguides. CLEO: Science and Innovations, STu4H. 1(2020).

    [7] M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, M. Lončar. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222(2019).

    [8] A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbruck, F. Schrempel, E. B. Kley, T. Pertsch, R. Grange. Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation. Opt. Express, 21, 19012(2013).

    [9] N. C. Panoiu, W. E. I. Sha, D. Y. Lei, G. C. Li. Nonlinear optics in plasmonic nanostructures. J. Opt., 20, 083001(2018).

    [10] B. Zhang, L. Wang, F. Chen. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photon. Rev., 14, 1900407(2020).

    [11] B. Sain, C. Meier, T. Zentgraf. “Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photon., 1, 024002(2019).

    [12] H. Lu, H. Xiong, Z. Huang, Y. Li, H. Dong, D. He, J. Dong, H. Guan, W. Qiu, X. Zhang, W. Zhu, J. Yu, Y. Luo, J. Zhang, Z. Chen. Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation. Opt. Express, 27, 19852(2019).

    [13] A. Rao, S. Fathpour. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics. IEEE J. Sel. Top. Quantum Electron., 24, 8200912(2018).

    [14] C. Pang, R. Li, Z. Li, N. Dong, F. Ren, J. Wang, F. Chen. A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism. Small, 16, 2003172(2020).

    [15] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [16] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, H. Bakhru. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293(1998).

    [17] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin‐film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).

    [18] P. Rabiei, P. Gunter. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett., 85, 4603(2004).

    [19] B. Zhu, H. Liu, Y. A. Liu, X. Yan, Y. Chen, X. Chen. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining. Opt. Lett., 45, 4132(2020).

    [20] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229(2014).

    [21] J.-Y. Chen, Y. M. Sua, Z.-H. Ma, C. Tang, Z. Li, Y.-P. Huang. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Continuum, 2, 2914(2019).

    [22] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).

    [23] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).

    [24] Z. Huang, H. Lu, H. Xiong, Y. Li, H. Chen, W. Qiu, H. Guan, J. Dong, W. Zhu, J. Yu, Y. Luo, J. Zhang, Z. Chen. Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation. Nanomaterials, 9, 69(2019).

    [25] D. Smirnova, A. I. Smirnov, Y. S. Kivshar. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles. Phys. Rev. A, 97, 013807(2018).

    [26] N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, L. Tong. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt. Express, 28, 12416(2020).

    [27] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910(2020).

    [28] M. Bazzan, C. Sada. Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev., 2, 040603(2015).

    [29] W. J. Park, W. S. Yang, W. K. Kim, H. Y. Lee, J. W. Lim, M. Isshiki, D. H. Yoon. Ridge structure etching of LiNbO3 crystal for optical waveguide applications. Opt. Mater., 28, 216(2006).

    [30] R. Wolf, I. Breunig, H. Zappe, K. Buse. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express, 25, 29927(2017).

    [31] L. Arizmendi. Photonic applications of lithium niobate crystals. Phys. Status Solidi (A), 201, 253(2004).

    [32] R. W. Boyd. Nonlinear Optics(2003).

    [33] S. Fathpour. Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron., 54, 6300716(2018).

    [34] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918(1962).

    [35] J. E. Toney. Lithium Niobate Photonics(2015).

    [36] L. Cai, Y. Wang, H. Hu. Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film. Opt. Commun., 387, 405(2017).

    [37] J. Webjörn, D. Nam, S. Siala, R. Waarts. Nonlinear waveguides on the way to the marketplace. Opt. Photon. News, 8, 16(1997).

    [38] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287(2020).

    [39] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).

    [40] Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, S. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [41] T. Ding, Y. Zheng, X. Chen. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip. Opt. Lett., 44, 1524(2019).

    [42] J. Zhao, M. Rüsing, U. A. Javid, J. Ling, M. Li, Q. Lin, S. Mookherjea. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669(2020).

    [43] L. Wang, L.-Q. Li, X.-T. Zhang, F. Chen. Type I phase matching in thin film of lithium niobate on insulator. Res. Phys., 16, 103011(2020).

    [44] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, M. Lončar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963(2017).

    [45] A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, S. Fathpour. Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation. Appl. Phys. Lett., 110, 111109(2017).

    [46] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455(2019).

    [47] C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, M. Lončar. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).

    [48] B. Fang, H. Li, S. Zhu, T. Li. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photon. Res., 8, 1296(2020).

    [49] L. Zhang, Z. Hao, W. Mao, A. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Biperiodically poled lithium niobate microcavities for multiple nonlinear optical processes. CLEO: Science and Innovations, JTh2E.17(2020).

    [50] Y. Qiao, F. Ye, Y. Zheng, X. Chen. Cavity-enhanced second-harmonic generation in strongly scattering nonlinear media. Phys. Rev. A, 99, 043844(2019).

    [51] F. Timpu, J. Sendra, C. Renaut, L. Lang, M. Timofeeva, M. T. Buscaglia, V. Buscaglia, R. Grange. Lithium niobate nanocubes as linear and nonlinear ultraviolet Mie resonators. ACS Photon., 6, 545(2019).

    [52] A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. F. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, F. Setzpfandt. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608(2020).

    [53] J. Ma, M. Ren, W. Wu, W. Cai, J. Xu. Resonantly tunable second harmonic generation from lithium niobate metasurfaces(2020).

    [54] V. F. Gili, L. Ghirardini, D. Rocco, G. Marino, I. Favero, I. Roland, G. Pellegrini, L. Duò, M. Finazzi, L. Carletti, A. Locatelli, A. Lemaître, D. Neshev, C. De Angelis, G. Leo, M. Celebrano. Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J. Nanotechnol., 9, 2306(2018).

    [55] G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, A. V. Bragas. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett., 14, 6660(2014).

    [56] M. Mayy, G. Zhu, A. Webb, H. Ferguson, T. Norris, V. Podolskiy, M. Noginov. Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons. Opt. Express, 22, 7773(2014).

    [57] B. Metzger, M. Hentschel, M. Lippitz, H. Giessen. Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt. Lett., 37, 4741(2012).

    [58] D. Bar-Lev, J. Scheuer. Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Opt. Express, 21, 29165(2013).

    [59] D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E.-B. Kley, A. Tünnermann. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett., 15, 1025(2015).

    [60] F. Lu, T. Li, X. Hu, Q. Cheng, S. Zhu, Y. Zhu. Efficient second-harmonic generation in nonlinear plasmonic waveguide. Opt. Lett., 36, 3371(2011).

    [61] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715(2015).

    [62] L. Ai, L. Wang, Y. Tan, S. Akhmadaliev, S. Zhou, F. Chen. Efficient second harmonic generation of diced ridge waveguides based on carbon ion-irradiated periodically poled LiNbO3. J. Lightwave Technol., 35, 2476(2016).

    [63] A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho-González, A. Honardoost, S. Fathpour. Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon. Frontiers in Optics/Laser Science, JTu3A.59(2018).

    [64] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006(2018).

    [65] A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 % W−1 cm−2. Opt. Express, 27, 25920(2019).

    [66] J.-Y. Chen, C. Tang, Z.-H. Ma, Z. Li, Y. M. Sua, Y.-P. Huang. Efficient and highly tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt. Lett., 45, 3789(2020).

    [67] J. Zhao, C. Ma, M. Rüsing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [68] B. Zhang, L. Li, L. Wang, F. Chen. Second harmonic generation in femtosecond laser written lithium niobate waveguides based on birefringent phase matching. Opt. Mater., 107, 110075(2020).

    [69] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40(2020).

    [70] V. Ng, A. M. Warrier, J. Lin, D. J. Spence, J. E. Downes, D. W. Coutts, J. M. Dawes. Plasmonic second-harmonic generation in gold:lithium niobate thin films. J. Opt. Soc. Am. B, 35, 302(2018).

    [71] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [72] J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).

    [73] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016).

    [74] Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. Chin. Phys. Mech. Astron., 61, 114211(2018).

    [75] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531(2017).

    [76] J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. Chin. Phys. Mech. Astron., 58, 114209(2015).

    [77] M. Wang, N. Yao, R. Wu, Z. Fang, S. Lv, J. Zhang, J. Lin, W. Fang, Y. Cheng. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New J. Phys., 22, 073030(2020).

    [78] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [79] M. Timofeeva, L. Lang, F. Timpu, C. Renaut, A. Bouravleuv, I. Shtrom, G. Cirlin, R. Grange. Anapoles in free-standing III–V nanodisks enhancing second-harmonic generation. Nano Lett., 18, 3695(2018).

    [80] K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, Y. S. Kivshar. Optical anapoles: concepts and applications. Adv. Opt. Mater., 7, 1801350(2019).

    [81] K.-H. Kim, W.-S. Rim. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation. ACS Photon., 5, 4769(2018).

    [82] Y. Li, Z. Huang, Z. Sui, H. Chen, X. Zhang, W. Huang, H. Guan, W. Qiu, J. Dong, W. Zhu, J. Yu, H. Lu, Z. Chen. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 9, 3575(2020).

    [83] E. Barakat, M.-P. Bernal, F. I. Baida. Doubly resonant Ag–LiNbO3 embedded coaxial nanostructure for high second-order nonlinear conversion. J. Opt. Soc. Am. B, 30, 1975(2013).

    [84] E. Barakat, M.-P. Bernal, F. I. Baida. Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures. Opt. Express, 20, 16258(2012).

    [85] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924(2014).

    [86] J. Ma, J. Chen, M. Ren, W. Wu, W. Cai, J. Xu. Second-harmonic generation and its nonlinear depolarization from lithium niobate thin films. Opt. Lett., 45, 145(2020).

    [87] R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin, J. Guan, L. Deng, M. Wang. Ultrahigh quality-factor microresonators fabricated in pristine lithium niobate thin film for efficient nonlinear optics applications(2021).

    [88] J. Ma, F. Xie, W. Chen, J. Chen, W. Wu, W. Liu, Y. Chen, W. Cai, M. Ren, J. Xu. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photon. Rev., 20, 8608(2021).

    CLP Journals

    [1] Zhenzhong Hao, Li Zhang, Jie Wang, Fang Bo, Feng Gao, Guoquan Zhang, Jingjun Xu. Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk[J]. Chinese Optics Letters, 2022, 20(11): 111902

    [2] Renhong Gao, Ni Yao, Jianglin Guan, Li Deng, Jintian Lin, Min Wang, Lingling Qiao, Wei Fang, Ya Cheng. Lithium niobate microring with ultra-high Q factor above 108[J]. Chinese Optics Letters, 2022, 20(1): 011902

    Data from CrossRef

    [1] Lingyun Yu, Jumei Shang, Kaiwen Luo, Qijing Lin, Huajiang Chen, Wentao Qiu, Heyuan Guan, Huihui Lu. Design of High-Speed Mid-Infrared Electro-Optic Modulator Based on Thin Film Lithium Niobate. IEEE Photonics Journal, 14, 1(2022).

    Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012
    Download Citation