• Chinese Optics Letters
  • Vol. 19, Issue 6, 060012 (2021)
Yang Li1, Zhijin Huang1, Wentao Qiu1, Jiangli Dong2, Heyuan Guan2、*, and Huihui Lu1、**
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
  • 2Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
  • show less
    DOI: 10.3788/COL202119.060012 Cite this Article Set citation alerts
    Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012 Copy Citation Text show less
    Summary of different approaches of SHG based on TFLN technology.
    Fig. 1. Summary of different approaches of SHG based on TFLN technology.
    (a) Schematic and false-color SEM image of a periodically poled nanophotonic waveguide[39]; Copyright 2018, Optical Society of America. (b) SH confocal microscopy of the PPLN thin film fabricated by microelectrode poling and the cross section of the LNOI ridge waveguide[40]; Copyright 2020, AIP Publishing. (c) Schematic of the cascading EO coupling and SHG process in the PPLN ridge waveguide[41]; Copyright 2019, Optical Society of America. (d) Schematic illustration of the PPLN waveguide with poling electrodes[42]; Copyright 2019, Optical Society of America.
    Fig. 2. (a) Schematic and false-color SEM image of a periodically poled nanophotonic waveguide[39]; Copyright 2018, Optical Society of America. (b) SH confocal microscopy of the PPLN thin film fabricated by microelectrode poling and the cross section of the LNOI ridge waveguide[40]; Copyright 2020, AIP Publishing. (c) Schematic of the cascading EO coupling and SHG process in the PPLN ridge waveguide[41]; Copyright 2019, Optical Society of America. (d) Schematic illustration of the PPLN waveguide with poling electrodes[42]; Copyright 2019, Optical Society of America.
    (a) Demonstration of efficient SHG in PPLN microring resonators[46]; Copyright 2019, Optical Society of America. (b) Schematic of the periodically grooved structure of an LN waveguide and cross-section image of the X-cut LNOI waveguide[44]; Copyright 2017, Optical Society of America. (c) Schematic and working principle of the metasurface-assisted LN nanophotonic waveguide[47]; Copyright 2017, Springer Nature. (d) Schematic of a rib-loaded GA-QPM waveguide with a sinusoidal modulation of the width along with the optical mode profiles of the fundamental and SH TE modes at a grating width of 1095 nm[45]; Copyright 2017, AIP Publishing.
    Fig. 3. (a) Demonstration of efficient SHG in PPLN microring resonators[46]; Copyright 2019, Optical Society of America. (b) Schematic of the periodically grooved structure of an LN waveguide and cross-section image of the X-cut LNOI waveguide[44]; Copyright 2017, Optical Society of America. (c) Schematic and working principle of the metasurface-assisted LN nanophotonic waveguide[47]; Copyright 2017, Springer Nature. (d) Schematic of a rib-loaded GA-QPM waveguide with a sinusoidal modulation of the width along with the optical mode profiles of the fundamental and SH TE modes at a grating width of 1095 nm[45]; Copyright 2017, AIP Publishing.
    (a) Schematic of the LN powder to form the cavity behavior in the SH emission at a certain pump intensity[50]; Copyright 2019, American Physical Society. (b) SEM images of single LN nanocubes to obtain the maximal SHG[51]; Copyright 2019, American Chemical Society.
    Fig. 4. (a) Schematic of the LN powder to form the cavity behavior in the SH emission at a certain pump intensity[50]; Copyright 2019, American Physical Society. (b) SEM images of single LN nanocubes to obtain the maximal SHG[51]; Copyright 2019, American Chemical Society.
    (a) Images of SHG in an LN metasurface and SHG power depending on average power of the fundamental harmonic (FH) beam[52]; Copyright 2020, American Chemical Society. (b) Schematic of LN nonlinear metasurfaces fabricated on an X-cut LN film residing on a fused quartz substrate. Left inset gives a typical SEM image of the cross section of the metasurface, and the right inset presents the measured second-order susceptibility of the LN film used in this study[53]; Copyright 2021, John Wiley and Sons.
    Fig. 5. (a) Images of SHG in an LN metasurface and SHG power depending on average power of the fundamental harmonic (FH) beam[52]; Copyright 2020, American Chemical Society. (b) Schematic of LN nonlinear metasurfaces fabricated on an X-cut LN film residing on a fused quartz substrate. Left inset gives a typical SEM image of the cross section of the metasurface, and the right inset presents the measured second-order susceptibility of the LN film used in this study[53]; Copyright 2021, John Wiley and Sons.
    (a) SEM images showing the mask for ion-beam-enhanced etching (IBEE) (Cr/SiO2 pillars) and measured SH enhancement factor and linear reflection spectrum of the fabricated sample[59]; Copyright 2015, American Chemical Society. (b) Schematic of the experiment mounted using index matching oil in a typical Kretschmann geometry[70]; Copyright 2018, Optical Society of America.
    Fig. 6. (a) SEM images showing the mask for ion-beam-enhanced etching (IBEE) (Cr/SiO2 pillars) and measured SH enhancement factor and linear reflection spectrum of the fabricated sample[59]; Copyright 2015, American Chemical Society. (b) Schematic of the experiment mounted using index matching oil in a typical Kretschmann geometry[70]; Copyright 2018, Optical Society of America.
    (a) Scanning-electron micrograph of LN microresonators to achieve modal dispersion[75]; Copyright 2017, Optical Society of America. (b) SEM images of the LN microdisk PM[77]; Copyright 2020, IOP Publishing. (c) SEM image of the X-cut LN microdisk and spectra of the pump light, the second-harmonic wave, and the third-harmonic wave. SHG conversion efficiency as a function of the in-coupled power[78]; Copyright 2019, American Physical Society. (d) Schematic depiction of the proposed nanostructure for generating SH and nonlinear simulations[82]; Copyright 2020, De Gruyter.
    Fig. 7. (a) Scanning-electron micrograph of LN microresonators to achieve modal dispersion[75]; Copyright 2017, Optical Society of America. (b) SEM images of the LN microdisk PM[77]; Copyright 2020, IOP Publishing. (c) SEM image of the X-cut LN microdisk and spectra of the pump light, the second-harmonic wave, and the third-harmonic wave. SHG conversion efficiency as a function of the in-coupled power[78]; Copyright 2019, American Physical Society. (d) Schematic depiction of the proposed nanostructure for generating SH and nonlinear simulations[82]; Copyright 2020, De Gruyter.
    YearTFLN StructurePoled/Coupling Region Length L (mm)FF Power (λFF)Coupling Loss (dB/facet)Waveguide Propagation Loss (dB/cm)ηSH (%W1cm2)Institute
    2011Plasmonic waveguide[60]11 W (1550 nm)1.3%Nanjing University
    2015Nanoscale LN waveguides[61]0.9737 µW (1411 nm)616.9Friedrich Schiller Universität Jena
    2017PE channel waveguide[36]3.21 mW (1385 nm)2.548Shandong University
    2016Rib-loaded SiN-PPLN[22]4.80.5 mW (1530 nm)∼6.80.3±0.2160University of California
    2017Metasurface-assisted PM LN waveguide[47]0.019109 V/m/20 mW (1640 nm)1660Harvard University
    2017GA-QPM LN ridge waveguide[45]4.984 mW (1568 nm)6.510.8University of Central Florida
    2017Integrated TFLN waveguide[44]318.3 µW (1550 nm)4.83±0.241Harvard University
    2016Diced ridge PPLN waveguides[62]5.86.6 mW (1550 nm)0.5777.9Shandong University
    2018PPLN on silicon[63]2010 mW (1547 nm)0.21230University of Central Florida
    2018Nanostructured PPLN waveguide[39]4220 mW (1550 nm)∼102600Harvard University
    2018LN nanophotonic waveguide[64]8∼1 mW (1540 nm)50.5422.2University of Rochester
    2019PPLN microrings[46]115 µW (1617 nm)250,000%/WYale University
    2019PPLNOI ridge waveguide[41]1010 mW (1590 nm)0.04Shanghai Jiao Tong University
    2019Dry-etched[65]0.61 mW (1540 nm)634600University of Central Florida
    2019Dry-etched[21]42.95 mW (1550 nm)4.30.32200Stevens Institute of Technology
    2020Z-cut PPLNOI waveguide[66]1–(1550 nm)5.4±0.3<0.032400Stevens Institute of Technology
    2020Dry-etched PPLN[67]50.1 mW (1570 nm)70.542000University of California
    2020PPLNOI ridge waveguide[40]6397 µW (1470 nm)3061Nanjing University+Sun Yat-sen University
    2020Birefringent phase-matching LN waveguide[68]104500 W (1064 nm)0.580.87%Shandong University
    2020Shallow-etched TFLN waveguides[42]510 mW (1560 nm)7.713757University of California
    2020PPLN waveguide[69]660 fJ (2050 nm)<0.11000Stanford University
    2020LN slab waveguides by grating metasurfaces[48]0.0525 mW (1064 nm)4.6×107Nanjing University
    Table 1. Comparisons of SHG Conversion Efficiency of Different TF-PPLN Waveguides
    YearStructureMechanismStructure Parameter (Radius R, Diameter D, Height H, Thickness T)Peak Pump Intensity/Power (λFF)Q Factor (λ)ηSHηdimSH (W1)/Unstructured LNInstitute
    2012–2013Embedded Ag-LN[83,84]Fabry–Perot resonanceCoaxial aperture (Rinner=65nm, Router=135nm, H = 120 nm)–1550 nm27timesFEMTO-ST, CNRS
    2014LN microdisk resonators[85]Cavity resonanceLN microdisk (D = 28 µm, T = ∼300 nm)1.8 mW (1546 nm)1.02×105 (1507 nm)0.109Harvard University
    2015High-Q LN microresonator[76]Femtosecond laser micromachiningLN microdisk (D = ∼82 µm, T = ∼670 nm)54.6 µW (1550 nm)2.45×106 (1550 nm)2.30×103Shanghai Institute of Optics and Fine Mechanics
    2015LN-filled gold nanorings[59]Plasmonic resonanceRing Rinner=80nm, Router=120nm, H = 100 nm)4GW/cm2 (820 nm)20timesFriedrich Schiller University Jena
    2017LN microdisk resonator[75]Broadband SPDCLN microdisk (R = 45 µm, T = 300 nm)115 µW (1549.32 nm)1.2×105 (1549.32 nm)3.6×103University of Rochester
    2018PPLN microcavity[74]Whispering gallery mode (WGM)PPLN microdisk (D = ∼80 µm, T = 700 nm)1.1 mW (1550 nm)6.7×1052.2×103Nankai University
    2018Gold deposited on TFLN[70]Plasmonic SHGGold film (T = ∼30 nm)60MW/cm2 (1240 nm)2×1013Macquarie University
    2018LN nanodisks on an Al substrate[81]Anapole resonancesLN nanodisk (D = 256 nm, H = 70 nm)5.31GW/cm2 (351.3 nm)1.1528×105Institute of Lasers, State Academy of Sciences
    2019On-chip monocrystalline TFLN microdisk resonator[78]QPMLN microdisk (D = ∼30 µm, T = 600 nm)0.25 mW (1547.8 nm)9.61×106 (1547.8 nm)9.9%/mWShanghai Institute of Optics and Fine Mechanics
    2019LNO nanocubes[51]Mie resonancesNanocube (200 nm)1.7GW/cm2 (720 nm)7.6×107ETH Zürich
    2019Periodic LN bar and LN disk[24]Fano resonancesBar and disk (D = 700 nm, T = 340 nm, L = 1100 nm)3.2GW/cm2 (1605 nm)2350 (1605 nm)3.165×104Jinan University
    2019Superfine LN powder[50]Cavity-enhanced SHG1.58GW/cm2 (793.5 nm)Shanghai Jiao Tong University
    2020BPPLN microcavities[49]Multiple reciprocal vectorsMinimum domain unit (width = 100 nm)0.02 mW (1550 nm)1.43×1055.1×101Nankai University
    2020LNOI wafer[86]Fabry–Perot resonanceLN film (H = 196.8 nm)4.05GW/cm2 (840 nm)1.6×105Nankai University
    2020Nanostructured LN[82]Anapole resonancesLN nanodisk (D = 432 nm, H = 104 nm)5.31GW/cm2 (565.4 nm)5.1371×1050.1711Jinan University
    2020LN metasurface[52]ED and MD Mie resonancesNanocube (period = 870 nm, length = 700 nm)4.3GW/cm2 (1550 nm)1061.14×103Friedrich Schiller University Jena
    2021LN nanograting metasurfaces[83]Mie resonanceMetasurface (period D = 600 nm, H = 235 nm)2.05GW/cm2 (820 nm)4.2×1062timesNankai University
    2021Integrated LN microresonators[87]Ultrahigh Q performanceLN microdisk (D = 1030 µm)5 µW (1550 nm)1.56×108 (1551.52nm)602%/mWShanghai Institute of Optics and Fine Mechanics
    Table 2. Performance Comparisons of Different Micro- and Nanostructures Based on TFLN
    Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012
    Download Citation