• Advanced Photonics
  • Vol. 3, Issue 2, 026002 (2021)
Adam Overvig1 and Andrea Alù1、2、*
Author Affiliations
  • 1City University of New York, Advanced Science Research Center, Photonics Initiative, New York, United States
  • 2City University of New York, Graduate Center, Physics Program, New York, United States
  • show less
    DOI: 10.1117/1.AP.3.2.026002 Cite this Article Set citation alerts
    Adam Overvig, Andrea Alù. Wavefront-selective Fano resonant metasurfaces[J]. Advanced Photonics, 2021, 3(2): 026002 Copy Citation Text show less
    References

    [1] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [2] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124, 1866-1878(1961).

    [3] R. W. Wood. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. London Edinburgh Dublin Philos. Mag. J. Sci., 4, 396-402(1902).

    [4] A. Hessel, A. A. Oliner. A new theory of Wood’s anomalies on optical gratings. Appl. Opt., 4, 1275(1965).

    [5] S. S. Wang et al. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A, 7, 1470(1990).

    [6] S. S. Wang, R. Magnusson. Theory and application of guided-mode resonance filters. Appl. Opt., 32, 2606-2613(1993).

    [7] M. Grande et al. Graphene-based perfect optical absorbers harnessing guided mode resonances. Opt. Express, 23, 21032-21042(2015).

    [8] C. J. Chang-Hasnain, W. Yang. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics, 4, 379-440(2012).

    [9] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [10] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mater., 3, 16048(2016).

    [11] Z. Sadrieva et al. Multipolar origin of bound states in the continuum. Phys. Rev. B, 100, 115303(2019).

    [12] S. Li et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Phys. Rev. A, 100, 063803(2019).

    [13] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [14] A. C. Overvig et al. Selection rules for quasi-bound states in the continuum. Phys. Rev. B, 102, 035434(2020).

    [15] J. W. Yoon, S. H. Song, R. Magnusson. Critical field enhancement of asymptotic optical bound states in the continuum. Sci. Rep., 5, 18301(2015).

    [16] C. Qui et al. Active dielectric antenna on chip for spatial light modulation. Sci. Rep., 2, 855(2012).

    [17] A. Tittl et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [18] K. Koshelev et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

    [19] J. S. Ginsberg et al. Enhanced harmonic generation in gases using an all-dielectric metasurface. Nanophotonics, 10, 733-740(2020).

    [20] K. X. Wang et al. Fundamental bounds on decay rates in asymmetric single-mode optical resonators. Opt. Lett., 38, 100-102(2013).

    [21] A. C. Overvig, S. C. Malek, N. Yu. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett., 125, 017402(2020).

    [22] A. V. Kondratov et al. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance. Phys. Rev. B, 93, 195418(2016).

    [23] J. S. Eismann, M. Neugebauer, P. Banzer. Exciting a chiral dipole moment in an achiral nanostructure. Optica, 5, 954-959(2018).

    [24] Y. Hwang et al. Effects of fano resonance on optical chirality of planar plasmonic nanodevices. ACS Photonics, 5, 4538-4544(2018).

    [25] F. Zhang et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater., 27, 1704295(2017).

    [26] A. C. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [27] S. C. Malek et al. Active nonlocal metasurfaces. Nanophotonics, 10, 655-665(2020).

    [28] S. C. Malek et al. Resonant wavefront-shaping flat optics(2020).

    [29] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [30] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [31] M. Mansouree et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica, 7, 77-84(2020).

    [32] Y. Zhou et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl., 8, 80(2019).

    [33] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [34] K. Chen et al. Directional Janus metasurface. Adv. Mater., 32, 1906352(2020).

    [35] A. C. Overvig, S. Shrestha, N. Yu. Dimerized high contrast gratings. Nanophotonics, 7, 1157-1168(2018).

    [36] H. S. Nguyen et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to Dirac cones. Phys. Rev. Lett., 120, 066102(2018).

    [37] M. Chen et al. Huygens’ metasurfaces from microwaves to optics: a review. Nanophotonics, 7, 1207-1231(2018).

    [38] C. Pfeiffer et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett., 113, 023902(2014).

    [39] V. S. Asadchy et al. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys. Rev. X, 5, 031005(2015).

    [40] F. S. Cuesta et al. Planar broadband Huygens’ metasurfaces for wave manipulations. IEEE Trans. Antennas Propag., 66, 7117-7127(2018).

    [41] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [42] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [43] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [44] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [45] D. A. B. Miller, L. Zhu, S. Fan. Universal modal radiation laws for all thermal emitters. Proc. Natl. Acad. Sci. U. S. A., 114, 4336-4341(2017).

    Adam Overvig, Andrea Alù. Wavefront-selective Fano resonant metasurfaces[J]. Advanced Photonics, 2021, 3(2): 026002
    Download Citation