• Opto-Electronic Science
  • Vol. 3, Issue 4, 230036 (2024)
Haizhou Huang, Huaixi Chen*, Huagang Liu, Zhi Zhang..., Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang** and Wenxiong Lin***|Show fewer author(s)
DOI: 10.29026/oes.2024.230036 Cite this Article
Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin. High-intensity spatial-mode steerable frequency up-converter toward on-chip integration[J]. Opto-Electronic Science, 2024, 3(4): 230036 Copy Citation Text show less
References

[1] XY Lu, Q Li, DA Westly et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat Phys, 15, 373-381(2019).

[2] YW Xie, SH Hong, H Yan et al. Low-loss chip-scale programmable silicon photonic processor. Opto-Electron Adv, 6, 220030(2023).

[3] YP Chen, Y Yin, LB Ma et al. Recent progress on optoplasmonic whispering-gallery-mode microcavities. Adv Opt Mater, 9, 2100143(2021).

[4] J Liu, F Bo, L Chang et al. Emerging material platforms for integrated microcavity photonics. Sci China Phys Mech, 65, 104201(2022).

[5] MX Li, JW Ling, Y He et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 11, 4123(2020).

[6] M Zhang, B Buscaino, C Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

[7] MB He, MY Xu, YX Ren et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat Photonics, 13, 359-364(2019).

[8] MA Tran, C Zhang, TJ Morin et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature, 610, 54-60(2022).

[9] S Aghaeimeibodi, B Desiatov, JH Kim et al. Integration of quantum dots with lithium niobate photonics. Appl Phys Lett, 113, 221102(2018).

[10] NX Li, GY Chen, DKT Ng et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv Opt Mater, 10, 2201008(2022).

[11] T Mizuno, Y Miyamoto. High-capacity dense space division multiplexing transmission. Opt Fiber Technol, 35, 108-117(2017).

[12] SN Khonina, NL Kazanskiy, MA Butt et al. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv, 5, 210127(2022).

[13] M Dong, G Clark, AJ Leenheer et al. High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture. Nat Photonics, 16, 59-65(2022).

[14] K Liao, Y Chen, ZC Yu et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv, 4, 200060(2021).

[15] JW Wang, S Paesani, YH Ding et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

[16] S Paesani, YH Ding, R Santagati et al. Generation and sampling of quantum states of light in a silicon chip. Nat Phys, 15, 925-929(2019).

[17] A Crespi, R Ramponi, R Osellame et al. Integrated photonic quantum gates for polarization qubits. Nat Commun, 2, 566(2011).

[18] XG Qiang, XQ Zhou, JW Wang et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics, 12, 534-539(2018).

[19] SY Lee, YS Ihn, Z Kim. Quantum illumination via quantum-enhanced sensing. Phys Rev A, 103, 012411(2021).

[20] SE Crawford, RA Shugayev, HP Paudel et al. Quantum sensing for energy applications: review and perspective. Adv Quantum Technol, 4, 2100049(2021).

[21] J Yim, N Chandra, XL Feng et al. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight, 2, 16(2022).

[22] L Carletti, A Zilli, F Moia et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics, 8, 731-737(2021).

[23] ZJ Lin, YM Lin, H Li et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci Appl, 11, 93(2022).

[24] S Kumar, H Zhang, P Kumar et al. Spatiotemporal mode-selective quantum frequency converter. Phys Rev A, 104, 023506(2021).

[25] YH Guo, SC Zhang, MB Pu et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl, 10, 63(2021).

[26] WJ Meng, YL Hua, K Cheng et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci, 1, 220004(2022).

[27] JM Shang, HJ Chen, Z Sui et al. Electro-optic high-speed optical beam shifting based on a lithium niobate tapered waveguide. Opt Express, 30, 14530-14537(2022).

[28] Y Xu, KP Zheng, JM Shang et al. Wavefront shaping for reconfigurable beam steering in lithium niobate multimode waveguide. Opt Lett, 47, 329-332(2022).

[29] SJ Li, ZY Li, GS Huang et al. Digital coding transmissive metasurface for multi-OAM-beam. Front Phys, 17, 62501(2022).

[30] H Biard, E Moreno-Pineda, M Ruben et al. Increasing the Hilbert space dimension using a single coupled molecular spin. Nat Commun, 12, 4443(2021).

[31] R Kruse, F Katzschmann, A Christ et al. Spatio-spectral characteristics of parametric down-conversion in waveguide arrays. New J Phys, 15, 083046(2013).

[32] LT Feng, M Zhang, X Xiong et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf, 5, 2(2019).

[33] MX Li, L Chang, L Wu et al. Integrated Pockels laser. Nat Commun, 13, 5344(2022).

[34] Y Li, ZJ Huang, WT Qiu et al. Recent progress of second harmonic generation based on thin film lithium niobate [Invited]. Chin Opt Lett, 19, 060012(2021).

[35] C Wang, ZY Li, MH Kim et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun, 8, 2098(2017).

[36] J Mishra, TP McKenna, E Ng et al. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica, 8, 921-924(2021).

[37] JJ Lu, A Al Sayem, Z Gong et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).

[38] GT Xue, YF Niu, XY Liu et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys Rev Appl, 15, 064059(2021).

[39] J Zhao, CX Ma, M Rusing et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett, 124, 163603(2020).

[40] M Karpiński, C Radzewicz, K Banaszek. Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide. Opt Lett, 37, 878-880(2012).

[41] R Machulka, J Svozilík, J Soubusta et al. Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide. Phys Rev A, 87, 013836(2013).

[42] PJ Mosley, A Christ, A Eckstein et al. Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion. Phys Rev Lett, 103, 233901(2009).

[43] A Christ, K Laiho, A Eckstein et al. Spatial modes in waveguided parametric down-conversion. Phys Rev A, 80, 033829(2009).

[44] S Kumar, H Zhang, S Maruca et al. Mode-selective image upconversion. Opt Lett, 44, 98-101(2019).

[45] M Karpiński, C Radzewicz, K Banaszek. Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide. Appl Phys Lett, 94, 181105(2009).

[46] YL Lee, W Shin, BA Yu et al. Mode tailoring in a ridge-type periodically poled lithium niobate waveguide. Opt Express, 18, 7678-7684(2010).

[47] C Eigner, L Padberg, M Santandrea et al. Spatially single mode photon pair source at 800 nm in periodically poled Rubidium exchanged KTP waveguides. Opt Express, 28, 32925-32935(2020).

[48] JH Park, WK Kim, WJ Jeong et al. Continuous control of spatial mode rotation using second harmonic generation. Appl Phys Lett, 97, 191113(2010).

[49] MJ Yu, III D Barton, R Cheng et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252-258(2022).

[50] SL Liu, C Yang, ZH Xu et al. High-dimensional quantum frequency converter. Phys Rev A, 101, 012339(2020).

[51] MG Vazimali, S Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv Photonics, 4, 034001(2022).

[52] LT Cai, A Mahmoud, M Khan et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 7, 1003-1013(2019).

[53] MJ Yu, Y Okawachi, R Cheng et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci Appl, 9, 9(2020).

[54] V Snigirev, A Riedhauser, G Lihachev et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature, 615, 411-417(2023).

[55] JF Hou, GH Situ. Image encryption using spatial nonlinear optics. eLight, 2, 3(2022).

Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin. High-intensity spatial-mode steerable frequency up-converter toward on-chip integration[J]. Opto-Electronic Science, 2024, 3(4): 230036
Download Citation