• Photonics Research
  • Vol. 10, Issue 12, 2816 (2022)
Binke Xia1, Jingzheng Huang1、2、*, Hongjing Li1, Miaomiao Liu1, Tailong Xiao1, Chen Fang1, and Guihua Zeng1、3、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2e-mail:
  • 3e-mail:
  • show less
    DOI: 10.1364/PRJ.473699 Cite this Article Set citation alerts
    Binke Xia, Jingzheng Huang, Hongjing Li, Miaomiao Liu, Tailong Xiao, Chen Fang, Guihua Zeng. Ultrasensitive measurement of angular rotations via a Hermite–Gaussian pointer[J]. Photonics Research, 2022, 10(12): 2816 Copy Citation Text show less
    References

    [1] J. K. Stockton, K. Takase, M. A. Kasevich. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett., 107, 133001(2011).

    [2] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [3] J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, M. J. Padgett. Rotational frequency shift of a light beam. Phys. Rev. Lett., 81, 4828-4830(1998).

    [4] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [5] Z. Zhang, L. Cen, J. Zhang, J. Hu, F. Wang, Y. Zhao. Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center. Opt. Express, 28, 6859-6867(2020).

    [6] S. Shi, D.-S. Ding, Z.-Y. Zhou, Y. Li, W. Zhang, B.-S. Shi. Magnetic-field-induced rotation of light with orbital angular momentum. Appl. Phys. Lett., 106, 261110(2015).

    [7] F. Pampaloni, J. Enderlein. Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: a primer(2004).

    [8] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [9] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger. Quantum entanglement of high angular momenta. Science, 338, 640-643(2012).

    [10] A. K. Jha, G. S. Agarwal, R. W. Boyd. Supersensitive measurement of angular displacements using entangled photons. Phys. Rev. A, 83, 053829(2011).

    [11] F. Bouchard, P. de la Hoz, G. Björk, R. W. Boyd, M. Grassl, Z. Hradil, E. Karimi, A. B. Klimov, G. Leuchs, J. Řeháček, L. L. Sánchez-Soto. Quantum metrology at the limit with extremal majorana constellations. Optica, 4, 1429-1432(2017).

    [12] V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 4, 2432(2013).

    [13] I. Afek, O. Ambar, Y. Silberberg. High-noon states by mixing quantum and classical light. Science, 328, 879-881(2010).

    [14] G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, G. J. Pryde. Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photonics, 5, 43-47(2011).

    [15] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, G. J. Pryde. Entanglement-free Heisenberg-limited phase estimation. Nature, 450, 393-396(2007).

    [16] R. Barboza, A. Babazadeh, L. Marrucci, F. Cardano, C. de Lisio, V. D’Ambrosio. Ultra-sensitive measurement of transverse displacements with linear photonic gears. Nat. Commun., 13, 1080(2022).

    [17] O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, R. W. Boyd. Amplification of angular rotations using weak measurements. Phys. Rev. Lett., 112, 200401(2014).

    [18] V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, H.-A. Bachor. tem10 homodyne detection as an optimal small-displacement and tilt-measurement scheme. Phys. Rev. A, 74, 053823(2006).

    [19] H. Sun, K. Liu, Z. Liu, P. Guo, J. Zhang, J. Gao. Small-displacement measurements using high-order Hermite-Gauss modes. Appl. Phys. Lett., 104, 121908(2014).

    [20] A. Holevo. Unbiased Measurements, 219-264(2011).

    [21] C. Rosales-Guzmán, N. Hermosa, A. Belmonte, J. P. Torres. Experimental detection of transverse particle movement with structured light. Sci. Rep., 3, 2815(2013).

    [22] N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, A. V. Sergienko. Object identification using correlated orbital angular momentum states. Phys. Rev. Lett., 110, 043601(2013).

    [23] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).

    [24] R. Jozsa. Complex weak values in quantum measurement. Phys. Rev. A, 76, 044103(2007).

    [25] K. Matsumoto. A new approach to the Cramér-Rao-type bound of the pure-state model. J. Phys. A, 35, 3111-3123(2002).

    [26] R. Demkowicz-Dobrzański, M. Jarzyna, J. Kołodyński. Chapter 4 - Quantum limits in optical interferometry. Prog. Opt., 60, 345-435(2015).

    [27] I. Kimel, L. R. Elias. Relations between Hermite and Laguerre Gaussian modes. IEEE J. Quantum Electron., 29, 2562-2567(1993).

    [28] G. Nienhuis. Analogies between optical and quantum mechanical angular momentum. Philos. Trans. R. Soc. A, 375, 20150443(2017).

    [29] J. Liu, H. Yuan, X.-M. Lu, X. Wang. Quantum fisher information matrix and multiparameter estimation. J. Phys. A: Math. Theor., 53, 023001(2019).

    [30] T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, N. Radwell. Comparison of beam generation techniques using a phase only spatial light modulator. Opt. Express, 24, 6249-6264(2016).

    [31] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [32] P. B. Dixon, D. J. Starling, A. N. Jordan, J. C. Howell. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett., 102, 173601(2009).

    [33] M. Hallaji, A. Feizpour, G. Dmochowski, J. Sinclair, A. Steinberg. Weak-value amplification of the nonlinear effect of a single photon. Nat. Phys., 13, 540-544(2017).

    [34] H. Li, J.-Z. Huang, Y. Yu, Y. Li, C. Fang, G. Zeng. High-precision temperature measurement based on weak measurement using nematic liquid crystals. Appl. Phys. Lett., 112, 231901(2018).

    [35] C. Fang, J.-Z. Huang, G. Zeng. Robust interferometry against imperfections based on weak value amplification. Phys. Rev. A, 97, 063818(2018).

    [36] L. Xu, Z. Liu, L. Zhang. Weak-measurement-enhanced metrology in the presence of ccd noise and saturation. Frontiers in Optics/Laser Science, JW4A.126(2018).

    [37] L. Xu, Z. Liu, A. Datta, G. C. Knee, J. S. Lundeen, Y.-Q. Lu, L. Zhang. Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification. Phys. Rev. Lett., 125, 080501(2020).

    [38] A. Sone, P. Cappellaro. Hamiltonian identifiability assisted by a single-probe measurement. Phys. Rev. A, 95, 022335(2017).

    [39] C. Fang, B. Xia, J. Huang, T. Xiao, Y. Yu, H. Li, G. Zeng. Hamiltonian estimation based on adaptive weak value amplification. J. Phys. B, 54, 075501(2021).

    [40] M. Genovese. Experimental quantum enhanced optical interferometry. AVS Quantum Sci., 3, 044702(2021).

    [41] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, M. H. Devoret. To catch and reverse a quantum jump mid-flight. Nature, 570, 200-204(2019).

    [42] M. Hays, V. Fatemi, K. Serniak, D. Bouman, S. Diamond, G. de Lange, P. Krogstrup, J. Nygård, A. Geresdi, M. H. Devoret. Continuous monitoring of a trapped superconducting spin. Nat. Phys., 16, 1103-1107(2020).

    [43] M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, M. L. Roukes. Nanomechanical measurements of a superconducting qubit. Nature, 459, 960-964(2009).

    [44] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, W. D. Oliver. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys., 11, 369-395(2020).

    [45] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, A. N. Cleland. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464, 697-703(2010).

    [46] B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, D. Bouwmeester. Optomechanical superpositions via nested interferometry. Phys. Rev. Lett., 109, 023601(2012).

    [47] K. C. Balram, M. I. Davanço, J. D. Song, K. Srinivasan. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics, 10, 346-352(2016).

    [48] W. Kong, A. Sugita, T. Taira. Generation of Hermite–Gaussian modes and vortex arrays based on two-dimensional gain distribution controlled microchip laser. Opt. Lett., 37, 2661-2663(2012).

    [49] S.-C. Chu, Y.-T. Chen, K.-F. Tsai, K. Otsuka. Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation. Opt. Express, 20, 7128-7141(2012).

    [50] B. Xia, J. Huang, C. Fang, H. Li, G. Zeng. High-precision multiparameter weak measurement with Hermite-Gaussian pointer. Phys. Rev. Appl., 13, 034023(2020).

    Binke Xia, Jingzheng Huang, Hongjing Li, Miaomiao Liu, Tailong Xiao, Chen Fang, Guihua Zeng. Ultrasensitive measurement of angular rotations via a Hermite–Gaussian pointer[J]. Photonics Research, 2022, 10(12): 2816
    Download Citation