• Advanced Photonics
  • Vol. 4, Issue 3, 034002 (2022)
Haoyi Yu1、2, Qiming Zhang1、2, Xi Chen1、2, Haitao Luan1、2, and Min Gu1、2、*
Author Affiliations
  • 1University of Shanghai for Science and Technology, Institute of Photonic Chips, Shanghai, China
  • 2University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Centre for Artificial-Intelligence Nanophotonics, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.4.3.034002 Cite this Article Set citation alerts
    Haoyi Yu, Qiming Zhang, Xi Chen, Haitao Luan, Min Gu. Three-dimensional direct laser writing of biomimetic neuron interfaces in the era of artificial intelligence: principles, materials, and applications[J]. Advanced Photonics, 2022, 4(3): 034002 Copy Citation Text show less
    References

    [1] A. D. Maynard. Could we 3D print an artificial mind?. Nat. Nanotechnol., 9, 955-956(2014).

    [2] Q. Zhang et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [3] S. Lamon et al. Nanophotonics-enabled optical data storage in the age of machine learning. APL Photonics, 6, 110902(2021).

    [4] O. Sporns et al. The human connectome: a structural description of the human brain. PLoS Comput. Biol., 1, e42(2005).

    [5] O. Sporn. Discovering the Human Connectome(2012).

    [6] J. M. Benyus. Biomimicry: Innovation Inspired by Nature, 320(1997).

    [7] E. Stratakis et al. Laser engineering of biomimetic surfaces. Mater. Sci. Eng.: R: Rep., 141, 100562(2020).

    [8] F. U. Rehman et al. Blood-brain barrier amenable gold nanoparticles biofabrication in aged cell culture medium. Mater. Today Bio., 8, 100072(2020).

    [9] E. Stratakis, H. Jeon, S. Koo. Structures for biomimetic, fluidic, and biological applications. MRS Bull., 41, 993-1001(2016).

    [10] T. R. Insel et al. The NIH brain initiative. Science, 340, 687-688(2013).

    [11] H. Markram. The human brain project. Sci. Am., 306, 50-55(2012).

    [12] S. G. Mason et al. A comprehensive survey of brain interface technology designs. Ann. Biomed. Eng., 35, 137-169(2007).

    [13] M. M. Poo et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing. Neuron, 92, 591-596(2016).

    [14] H. Okano et al. Brain/MINDS: brain-mapping project in Japan. Philos. Trans. R. Soc. B: Biol. Sci., 370, 20140310(2015).

    [15] Australian brain alliance. Neuron, 92, 597-600(2016).

    [16] J. A. Bierer et al. Probing the electrode-neuron interface with focused cochlear implant stimulation. Trends Amplif. J., 14, 84-95(2010).

    [17] J. Abbott et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng., 4, 232-241(2020).

    [18] A. Stett et al. Two-way silicon-neuron interface by electrical induction. Phys. Rev. E, 55, 1779-1782(1997).

    [19] P. Fromherz. The neuron-semiconductor interface. Bioelectronics: From Theory to Applications, 339-394(2005).

    [20] R. Lozano et al. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 67, 264-273(2015).

    [21] A. A. Gill et al. Towards the fabrication of artificial 3D microdevices for neural cell networks. Biomed. Microdevices, 17, 27(2015).

    [22] M. C. LaPlaca et al. Methods in Bioengineering: 3D Tissue Engineering(2010).

    [23] A. K. Vogt et al. Synaptic plasticity in micropatterned neuronal networks. Biomaterials, 26, 2549-2557(2005).

    [24] M. Jungblut et al. Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording. Biomed. Microdevices, 11, 1269(2009).

    [25] J. M. Corey et al. Compliance of hippocampal neurons to patterned substrate networks. J. Neurosci., 30, 300-307(1991).

    [26] H. Onoe et al. Microfabricated mobile microplates for handling single adherent cells. J. Micromech. Microeng., 18, 095003(2008).

    [27] J. Koffler et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med., 25, 263-269(2019).

    [28] T. Mammoto et al. Mechanical control of tissue and organ development. Development, 137, 1407-1420(2010).

    [29] A. Selimis et al. Direct laser writing: principles and materials for scaffold 3D printing. Microelectron. Eng., 132, 83-89(2015).

    [30] A. M. Taylor et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods, 2, 599(2005).

    [31] M. Merz et al. Silicon chip interfaced with a geometrically defined net of snail neurons. Adv. Funct. Mater., 15, 739-744(2005).

    [32] P. Gruber et al. Biomimetics–Materials, Structures and Processes: Examples, Ideas and Case Studies(2011).

    [33] D. B. Chklovskii. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron, 43, 609-617(2004).

    [34] J. M. J. Murre, D. P. Sturdy. The connectivity of the brain: multi-level quantitative analysis. Biol. Cybern., 73, 529-545(1995).

    [35] W. Li et al. NeuroArray: a universal interface for patterning and interrogating neural circuitry with single cell resolution. Sci. Rep., 4, 4784(2014).

    [36] T. J. Hinton et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv., 1, e1500758(2015).

    [37] S. Kawata et al. Finer features for functional microdevices. Nature, 412, 697-698(2001).

    [38] Z. Gan et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun., 4, 2061(2013).

    [39] M. T. Raimondi et al. Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. J. Appl. Biomater. Funct. Mater., 10, 56-66(2012).

    [40] M. I. Jordan et al. Machine learning: trends, perspectives, and prospects. Science, 349, 255-260(2015).

    [41] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [42] D. Melati et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019).

    [43] P. R. Wiecha et al. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 20, 329-338(2019).

    [44] A. Accardo et al. Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth. Biomed. Phys. Eng. Express, 4, 027009(2018).

    [45] G. Jensen et al. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm. Sin. B, 8, 756-766(2018).

    [46] L. B. Pan et al. Large extracellular spikes recordable from axons in microtunnels. IEEE Trans. Neural Syst. Rehabil. Eng., 22, 453-459(2013).

    [47] K. Taniguchi et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep., 5, 954-962(2015).

    [48] D. N. Heo et al. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater., 39, 25-33(2016).

    [49] V. Kuzmenko et al. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr. Polym., 189, 22-30(2018).

    [50] V. Melissinaki et al. Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication, 3, 045005(2011).

    [51] M. Y. Laura et al. Promoting neuron adhesion and growth. Mater. Today, 11, 36-43(2008).

    [52] D. R. Kipke et al. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng., 11, 151-155(2003).

    [53] G. Shahaf et al. Learning in networks of cortical neurons. J. Neurosci., 21, 8782-8788(2001).

    [54] O. Feinerman et al. Reliable neuronal logic devices from patterned hippocampal cultures. Nat. Phys., 4, 967-973(2008).

    [55] S. Fu et al. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomed. Mater., 14, 065011(2019).

    [56] J. Xing et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl. Phys. Lett., 90, 131106(2017).

    [57] C. Wyart et al. Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. J. Neurosci. Methods, 117, 123-131(2002).

    [58] P. Tayalia et al. 3D cell‐migration studies using two‐photon engineered polymer scaffolds. Adv. Mater., 20, 4494-4498(2008).

    [59] S. Turunen et al. Direct laser writing of microstructures for the growth guidance of human pluripotent stem cell derived neuronal cells. Opt. Lasers Eng., 55, 197-204(2014).

    [60] S. Turunen et al. Direct laser writing of tubular microtowers for 3D culture of human pluripotent stem cell-derived neuronal cells. ACS Appl. Mater. Interfaces, 9, 25717-25730(2017).

    [61] F. Klein et al. Elastic fully three‐dimensional microstructure scaffolds for cell force measurements. Adv. Mater., 22, 868-871(2010).

    [62] S. K. Seidlits et al. High‐resolution patterning of hydrogels in three dimensions using direct‐write photofabrication for cell guidance. Adv. Funct. Mater., 19, 3543-3551(2009).

    [63] J. Torgersen et al. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt., 17, 105008(2012).

    [64] J. Moughames et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica, 7, 640-646(2020).

    [65] M. D. Tang-Schomer et al. Bioengineered functional brain-like cortical tissue. Proc. Natl. Acad. Sci. U. S. A., 111, 13811-13816(2014).

    [66] M. G. Tupone et al. A state-of-the-art of functional scaffolds for 3D nervous tissue regeneration. Front. Bioeng. Biotechnol., 9, 639765(2021).

    [67] H. Yu et al. Three-dimensional direct laser writing of biomimetic neuron structures. Opt. Express, 26, 32111-32117(2018).

    [68] X. Fang et al. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108.

    [69] A. Accardo et al. Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization. Small, 13, 1700621(2017).

    [70] J. Fischer et al. Three‐dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev., 7, 22-44(2013).

    [71] M. Malinauskas et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep., 533, 1-31(2013).

    [72] P. V. Ferreras et al. Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J. Laser Appl., 24, 042004(2012).

    [73] M. Thiel et al. Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm. Appl. Phys. Lett., 97, 221102(2010).

    [74] V. Hahn et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photonics, 15, 932-938(2021).

    [75] Y. Cao et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt. Express, 19, 19486-19494(2011).

    [76] J. T. Fourkas, S. P. John. 2-Colour photolithography. Phys. Chem. Chem. Phys., 16, 8731-8750(2014).

    [77] H. Yu et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam. Light: Adv. Manuf., 9, 1(2021).

    [78] S. Wong et al. Direct laser writing of three‐dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Adv. Mater., 18, 265-269(2006).

    [79] Z. Gan et al. Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv., 2, e1600084(2016).

    [80] B. P. Cumming et al. Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. Opt. Express, 21, 19135-19141(2013).

    [81] A. Jesacher et al. Adaptive optics for direct laser writing with plasma emission aberration sensing. Opt. Express, 18, 656-661(2010).

    [82] M. D. Turner et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics, 7, 801-805(2013).

    [83] M. Göppert‐Mayer. Elementary processes with two quantum transitions. Ann. Phys., 18, 466-479(2009).

    [84] M. H. Olsen et al. In-chip fabrication of free-form 3D constructs for directed cell migration analysis. Lab Chip, 13, 4800-4809(2013).

    [85] J. Mačiulaitis et al. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication, 7, 015015(2015).

    [86] S. Fan et al. Guiding the patterned growth of neuronal axons and dendrites using anisotropic micropillar scaffolds. Adv. Healthcare Mater., 10, 2100094(2021).

    [87] J. Wu et al. Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discov. Today, 22, 1375-1384(2017).

    [88] W. Zhu et al. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol., 40, 103-112(2016).

    [89] S. Maruo et al. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22, 132-134(1997).

    [90] D. K. Cullen et al. Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (part 1). Crit. Rev. Bioeng., 39, 201-240(2011).

    [91] G. Márton et al. The neural tissue around SU-8 implants: a quantitative in vivo biocompatibility study. Mater. Sci. Eng., 112, 110870(2020).

    [92] S. H. Cho et al. Biocompatible SU-8-based microprobes for recording neural spike signals from re generated peripheral nerve fibers. IEEE Sens. J., 8, 1830-1836(2008).

    [93] M. Farsari et al. Multiphoton polymerization of hybrid materials. J. Opt., 12, 124001(2010).

    [94] M. Popall et al. ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim. Acta, 43, 1155-1161(1998).

    [95] K. Terzaki et al. 3D conducting nanostructures fabricated using direct laser writing. Opt. Mater., 1, 586-597(2011).

    [96] P. S. Timashev et al. 3D in vitro platform produced by two-photon polymerization for the analysis of neural network formation and function. Biomed. Phys. Eng. Express, 2, 035001(2016).

    [97] M. T. Raimondi et al. Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater., 9, 4579-4584(2013).

    [98] A. Ovsianikov et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano, 2, 2257-2262(2008).

    [99] S. Psycharakis et al. Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomed. Mater., 6, 045008(2011).

    [100] T. Haddad et al. Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering. Biomatter, 6, e1231276(2016).

    [101] J. Torgersen et al. Hydrogels for two‐photon polymerization: a toolbox for mimicking the extracellular matrix. Adv. Funct. Mater., 23, 4542-4554(2013).

    [102] G. D. Nicodemus, S. J. Bryant. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B: Rev., 14, 149-165(2008).

    [103] O. Kufelt et al. Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules, 15, 650-659(2014).

    [104] T. Y. Cheng et al. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials, 34, 2005-2016(2013).

    [105] Y. Yu et al. Bioinspired helical microfibers from microfluidics. Adv. Mater., 29, 1605765(2017).

    [106] F. Fu et al. Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. U. S. A., 114, 5900-5905(2017).

    [107] Z. Xie et al. Self‐assembled coffee‐ring colloidal crystals for structurally colored contact lenses. Small, 11, 926-930(2015).

    [108] H. A. Houck et al. Shining light on poly (ethylene glycol): from polymer modification to 3D laser printing of water erasable microstructures. Adv. Mater., 32, 2003060(2021).

    [109] T. Weiß et al. Two‐photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater., 13, B264-B273(2011).

    [110] A. Ovsianikov et al. Three-dimensional laser micro-and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater., 7, 967-974(2011).

    [111] J. D. Pitts et al. New photoactivators for multiphoton excited three‐dimensional submicron cross‐linking of proteins: bovine serum albumin and type 1 collagen. Photochem. Photobiol., 76, 135-144(2002).

    [112] L. P. Cunningham et al. Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Express, 14, 8613-8621(2006).

    [113] S. Basu et al. Multiphoton excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: bioactivity and enzymatic degradation. Biomacromolecules, 6, 1465-1474(2005).

    [114] X. H. Qin et al. Three‐dimensional microfabrication of protein hydrogels via two‐photon‐excited thiol‐vinyl ester photopolymerization. J. Polym. Sci. A Polym. Chem., 51, 4799-4810(2013).

    [115] J. Shamir et al. Massive holographic interconnection networks and their limitations. Appl. Opt., 28, 311(1989).

    [116] H. Yu et al. Neuron‐inspired Steiner tree networks for 3D low‐density metastructures. Adv. Sci., 8, 2100141(2021).

    [117] Z. S. Hou et al. UV–NIR femtosecond laser hybrid lithography for efficient printing of complex on-chip waveguides. Opt. Lett., 45, 1862-1865(2020).

    [118] H. Ding et al. 3D computer-aided nanoprinting for solid-state nanopores. Nanoscale Horiz., 3, 312-316(2018).

    [119] K. Eichler et al. The complete connectome of a learning and memory centre in an insect brain. Nature, 548, 175-182(2017).

    [120] H. Yu et al. Deep-learning-aided three-dimensional direct laser writing of the complete connectome of mushroom body from an insect brain(2019).

    [121] B. H. Li et al. Applications of artificial intelligence in intelligent manufacturing: a review. Front. Inf. Technol. Electron. Eng., 18, 86-96(2017).

    [122] G. Hinton. Mental simulation. Nature, 347, 627-628(1990).

    [123] J. B. Mueller et al. Polymerization kinetics in three‐dimensional direct laser writing. Adv. Mater., 26, 6566-6571(2014).

    [124] A. Li et al. Micro-optical sectioning tomography to obtain a high-resolution Atlas of the mouse brain. Science, 330, 1404-1408(2010).

    [125] Y. Jin et al. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt. Express, 26, 30162-30171(2018).

    [126] S. L. Campanelli et al. An artificial neural network approach for the control of the laser milling process. Int. J. Adv. Manuf. Technol., 66, 1777-1784(2013).

    [127] B. P. Cumming, M. Gu. Direct determination of aberration functions in microscopy by an artificial neural network. Opt. Express, 28, 14511-14521(2020).

    [128] S. Pal et al. Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J. Mater. Process Technol., 202, 464-474(2008).

    [129] D. S. Badkar et al. Parameter optimization of laser transformation hardening by using Taguchi method and utility concept. Int. J. Adv. Manuf. Technol., 52, 1067-1077(2011).

    [130] Y. Ai et al. Parameters optimization and objective trend analysis for fiber laser keyhole welding based on Taguchi-FEA. Int. J. Adv. Manuf. Technol., 90, 1419-1432(2017).

    [131] S. Theodoridis. Machine Learning: A Bayesian and Optimization Perspective(2015).

    [132] M. Januszewski et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods, 15, 605-610(2018).

    [133] T. J. Kowalski. An Artificial Intelligence Approach to VLSI Design(1985).

    [134] A. Mirhoseini et al. A graph placement methodology for fast chip design. Nature, 594, 207-212(2021).

    [135] A. Banerjee et al. Artificial intelligence in 3D printing: a revolution in health care. Emerging Applications of 3D Printing During CoVID 19 Pandemic, 57-79(2022).

    [136] R. Vidu et al. Nanostructures: a platform for brain repair and augmentation. Front. Syst. Neurosci., 8, 91(2014).

    [137] U. Delli et al. Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf., 26, 865-870(2018).

    [138] T. Wuest et al. An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J. Intell. Manuf., 25, 1167-1180(2014).

    [139] X. Gou et al. Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization. Appl. Surf. Sci., 416, 273-280(2017).

    [140] S. Jiguet et al. Conductive SU8 photoresist for microfabrication. Adv. Funct. Mater., 15, 1511-1516(2005).

    [141] M. Del Pozo et al. Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist. ACS Nano, 14, 9832-9839(2020).

    [142] J. H. Marshel et al. Cortical layer–specific critical dynamics triggering perception. Science, 365, eaaw5202(2019).

    [143] H. Xie et al. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc. Natl. Acad. Sci. U. S. A., 111, 2788-2793(2014).

    [144] M. Barbiero et al. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci. Appl., 6, e17085(2017).

    [145] R. S. Williams. How we found the missing memristor. IEEE Spectr., 45, 28-35(2008).

    [146] M. S. Hasan et al. Biomimetic, soft-material synapse for neuromorphic computing: from device to network. IEEE 13th Dallas Circuits and Syst. Conf., 1-6(2018).

    Haoyi Yu, Qiming Zhang, Xi Chen, Haitao Luan, Min Gu. Three-dimensional direct laser writing of biomimetic neuron interfaces in the era of artificial intelligence: principles, materials, and applications[J]. Advanced Photonics, 2022, 4(3): 034002
    Download Citation