• Photonics Research
  • Vol. 9, Issue 11, 2196 (2021)
Maziyar Milanizadeh1, Fabio Toso1, Giorgio Ferrari1, Tigers Jonuzi1、2, David A. B. Miller3, Andrea Melloni1, and Francesco Morichetti1、*
Author Affiliations
  • 1Dipartimento di Elettronica, Informazione e Bioingegneria-Politecnico di Milano, Milano 20133, Italy
  • 2Current address: VLC Photonics, Universidad Politécnica de Valencia, 46022 Valencia, Spain
  • 3Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
  • show less
    DOI: 10.1364/PRJ.428680 Cite this Article Set citation alerts
    Maziyar Milanizadeh, Fabio Toso, Giorgio Ferrari, Tigers Jonuzi, David A. B. Miller, Andrea Melloni, Francesco Morichetti. Coherent self-control of free-space optical beams with integrated silicon photonic meshes[J]. Photonics Research, 2021, 9(11): 2196 Copy Citation Text show less
    References

    [1] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, A. M. Weiner. Roadmap on structured light. J. Opt., 19, 013001(2017).

    [2] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon., 3, 128-160(2011).

    [3] R. Heintzmann, T. Huser. Super-resolution structured illumination microscopy. Chem. Rev., 117, 13890-13908(2017).

    [4] B. K. Singh, H. Nagar, Y. Roichman, A. Arie. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams. Light Sci. Appl., 6, e17050(2016).

    [5] M. Cox, N. Mphuthi, I. Nape, N. Mashaba, L. Cheng, A. Forbes. Structured light in turbulence. IEEE J. Sel. Top. Quantum Electron., 27, 7500521(2021).

    [6] G. Lazarev, A. Hermerschmidt, S. Krüger, S. Osten. LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies, 1-29(2012).

    [7] J. Park, B. G. Jeong, S. I. Kim, D. Lee, J. Kim, C. Shin, C. B. Lee, T. Otsuka, J. Kyoung, S. Kim, K.-Y. Yang, Y.-Y. Park, J. Lee, I. Hwang, J. Jang, S. Song. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).

    [8] S.-Q. Li, X. Xu, R. M. Veetil, V. Valuckas, R. Paniagua-Domínguez, A. I. Kuznetsov. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [9] R. Li, L. Cao. Progress in phase calibration for liquid crystal spatial light modulators. Appl. Sci., 9, 2012(2019).

    [10] W. Bogaerts, D. Pérez, J. Capmany, D. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [11] D. A. B. Miller. Self-configuring universal linear optical component. Photon. Res., 1, 1-15(2013).

    [12] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, A. Laing. Universal linear optics. Science, 349, 711-716(2015).

    [13] A. Annoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. Miller, A. Melloni, F. Morichetti. Unscrambling light-automatically undoing strong mixing between modes. Light Sci. Appl., 6, e17110(2017).

    [14] N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, D. Englund. Linear programmable nanophotonic processors. Optica, 5, 1623-1631(2018).

    [15] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, A. J. Lowery. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2, 854-859(2015).

    [16] D. Perez, I. Gasulla, L. Crudgington, D. Thomson, A. Khokhar, K. Li, W. Cao, G. Mashanovich, J. Capmany. Multipurpose silicon photonics signal processor core. Nat. Commun., 8, 636(2017).

    [17] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonic. Nat. Photonics, 13, 80-90(2019).

    [18] Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. Roeloffzen, K. J. Boller, C. Lowery. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics, 7, 421-454(2017).

    [19] D. A. B. Miller. Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photon., 11, 679-825(2019).

    [20] K. Choutagunta, I. Roberts, D. A. B. Miller, J. M. Kahn. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Lightwave Technol., 38, 723-735(2020).

    [21] F. Shokraneh, S. Geoffroy-Gagnon, M. S. Nezami, O. Liboiron-Ladouceur. A single layer neural network implemented by a 4 × 4 MZI-based optical processor. IEEE Photon. J., 11, 4501612(2019).

    [22] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2019).

    [23] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [24] D. A. B. Miller. Establishing optimal wave communication channels automatically. J. Lightwave Technol., 31, 3987-3994(2013).

    [25] M. Milanizadeh, T. Jonuzi, P. Borga, F. Toso, G. Ferrari, M. Sampietro, D. Miller, A. Melloni, F. Morichetti. Control of programmable photonic integrated meshes for free-space optics applications. OSA Advanced Photonics Congress, PsM2F.1(2020).

    [26] J. W. Goodman. Introduction to Fourier Optics(2005).

    [27] F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron., 20, 292-301(2014).

    [28] M. Milanizadeh, S. Ahmadi, M. Petrini, D. Aguiar, R. Mazzanti, F. Zanetto, E. Guglielmi, M. Sampietro, F. Morichetti, A. Melloni. Control and calibration recipes for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 26, 6100610(2020).

    [29] M. Milanizadeh, D. Aguiar, A. Melloni, F. Morichetti. Canceling thermal cross-talk effects in photonic integrated circuits. J. Lightwave Technol., 37, 1325-1332(2019).

    [30] F. Zanetto, V. Grimaldi, F. Toso, E. Guglielmi, M. Milanizadeh, D. Aguiar, M. Moralis-Pegios, S. Pitris, T. Alexoudi, F. Morichetti, A. Melloni, G. Ferrari, M. Sampietro. Dithering-based real-time control of cascaded silicon photonic devices by means of non-invasive detectors. IET Optoelectron., 15, 111-120(2021).

    [31] S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, A. Melloni. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1, 129-136(2014).

    [32] D. Pérez-López, A. López, P. DasMahapatra, J. Capmany. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun., 11, 6359(2020).

    [33] W. Gao, L. Lu, L. Zhou, J. Chen. Automatic calibration of silicon ring-based optical switch powered by machine learning. Opt. Express, 28, 10438-10455(2020).

    [34] A. Hooman, H. Hashemi. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express, 23, 6509-6519(2015).

    [35] C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, M. R. Watts. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 700108(2019).

    [36] https://doi.org/10.5281/zenodo.5109498. https://doi.org/10.5281/zenodo.5109498

    Maziyar Milanizadeh, Fabio Toso, Giorgio Ferrari, Tigers Jonuzi, David A. B. Miller, Andrea Melloni, Francesco Morichetti. Coherent self-control of free-space optical beams with integrated silicon photonic meshes[J]. Photonics Research, 2021, 9(11): 2196
    Download Citation