• Advanced Photonics
  • Vol. 2, Issue 6, 064001 (2020)
Yifeng Xiong and Fei Xu*
Author Affiliations
  • Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.2.6.064001 Cite this Article Set citation alerts
    Yifeng Xiong, Fei Xu. Multifunctional integration on optical fiber tips: challenges and opportunities[J]. Advanced Photonics, 2020, 2(6): 064001 Copy Citation Text show less
    References

    [1] A. F. Abouraddy et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater., 6, 336-347(2007).

    [2] M. Bayindir et al. Integrated fibres for self-monitored optical transport. Nat. Mater., 4, 820-825(2005).

    [3] O. Shapira et al. Surface-emitting fiber lasers. Opt. Express, 14, 3929-3935(2006).

    [4] A. Bedeloglu et al. A photovoltaic fiber design for smart textiles. Text. Res. J., 80, 1065-1074(2009).

    [5] N. Podoliak et al. Design of dual-core optical fibers with NEMS functionality. Opt. Express, 22, 1065-1076(2014).

    [6] A. Canales et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol., 33, 277-284(2015).

    [7] S. Egusa et al. Multimaterial piezoelectric fibres. Nat. Mater., 9, 643-648(2010).

    [8] M. Fokine et al. Integrated fiber Mach–Zehnder interferometer for electro-optic switching. Opt. Lett., 27, 1643-1645(2002).

    [9] W. Yan et al. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt. Mater. Express, 7, 1388-1397(2017).

    [10] W. Yan et al. Semiconducting nanowire-based optoelectronic fibers. Adv. Mater., 29, 1700681(2017).

    [11] W. Yan et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater., 31, 1802348(2019).

    [12] W. Yan et al. Thermally drawn advanced functional fibers: new Frontier of flexible electronics. Mater. Today, 35, 168-194(2020).

    [13] L. Tong et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816-819(2003).

    [14] J.-H. Chen, D.-R. Li, F. Xu. Optical microfiber sensors: sensing mechanisms, and recent advances. J. Lightwave Technol., 37, 2577-2589(2019).

    [15] D. Pawar, S. N. Kale. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Mikrochim. Acta, 186, 253(2019).

    [16] H. Chen et al. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev., 5, 011102(2018).

    [17] E. J. Lee et al. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 6, 6851(2015).

    [18] J. D. Zapata et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep., 6, 20644(2016).

    [19] J. L. Kou et al. Microfiber-based Bragg gratings for sensing applications: a review. Sensors, 12, 8861-8876(2012).

    [20] S. Pissadakis. Lab-in-a-fiber sensors: a review. Microelectron. Eng., 217, 111105(2019).

    [21] M. Pisco, A. Cusano. Lab-on-fiber technology: a roadmap toward multifunctional plug and play platforms. Sensors, 20, 4705(2020).

    [22] Q. Wang, L. Wang. Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale, 12, 7485-7499(2020).

    [23] P. Vaiano et al. Lab on fiber technology for biological sensing applications. Laser Photonics Rev., 10, 922-961(2016).

    [24] A. Ricciardi et al. Lab-on-fiber technology: a new vision for chemical and biological sensing. Analyst, 140, 8068-8079(2015).

    [25] G. Kostovski, P. R. Stoddart, A. Mitchell. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Adv. Mater., 26, 3798-3820(2014).

    [26] M. Consales, M. Pisco, A. Cusano. Lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sensors, 2, 289-314(2012).

    [27] R. He et al. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photonics, 6, 174-179(2012).

    [28] A. F. Abouraddy et al. Large-scale optical-field measurements with geometric fibre constructs. Nat. Mater., 5, 532-536(2006).

    [29] R. Raabe et al. No enhancement of fusion probability by the neutron halo of He6. Nature, 431, 823-826(2004). https://doi.org/10.1038/nature02984

    [30] B. Temelkuran et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 420, 650-653(2002). https://doi.org/10.1038/nature01275

    [31] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [32] K. I. Mullen, K. T. Carron. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes. Anal. Chem., 63, 2196-2199(1991).

    [33] W. H. C. Viets. Comparison of fibre-optic SERS sensors with differently prepared tips. Sens. Actuators B, 51, 92-99(1998).

    [34] T. Grosjean et al. Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams. Appl. Opt., 46, 8061-8067(2007).

    [35] C. Li et al. Manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering Fermi-Dirac distribution. Adv. Opt. Mater., 5, 1700630(2017).

    [36] Y.-F. Xiong et al. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism. Adv. Electron. Mater., 5, 1800562(2019). https://doi.org/10.1002/aelm.201800562

    [37] Y. Xiong et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater., 32, 1907242(2020).

    [38] J. H. Chen et al. Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet. Nanoscale, 9, 3424-3428(2017).

    [39] F. A. Bruno et al. Opto-mechanical lab-on-fiber accelerometers. J. Lightwave Technol., 38, 1998-2009(2020).

    [40] S. V. Beekmans et al. Minimally invasive micro-indentation: mapping tissue mechanics at the tip of an 18G needle. Sci. Rep., 7, 11364(2017).

    [41] H. van Hoorn et al. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. Soft Matter, 12, 3066-3073(2016).

    [42] M. Pisco et al. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake. Sci. Rep., 8, 6680(2018).

    [43] J.-Y. Rauch et al. Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the μRobotex nanofactory. J. Vac. Sci. Technol. A, 36, 041601(2018). https://doi.org/10.1116/1.5020128

    [44] F. Guo et al. High-sensitivity, high-frequency extrinsic Fabry–Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett., 37, 1505-1507(2012).

    [45] J. Ma et al. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett., 37, 2493-2495(2012).

    [46] Y. Wang et al. Compressible fiber optic micro-Fabry–Perot cavity with ultra-high pressure sensitivity. Opt. Express, 21, 14084-14089(2013).

    [47] J. Xu et al. Suppression of parasitic interference in a fiber-tip Fabry–Perot interferometer for high-pressure measurements. Opt. Express, 26, 28178-28186(2018).

    [48] Z. Yizheng, W. Anbo. Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett., 17, 447-449(2005).

    [49] Z.-Y. Liu, H.-Q. Cao, F. Xu. Fiber-optic Lorentz force magnetometer based on a gold-graphene composite membrane. Appl. Phys. Lett., 112, 203504(2018).

    [50] Y. Zhao et al. Optical fiber axial contact force sensor based on bubble-expanded Fabry–Pérot interferometer. Sens. Actuators A, 272, 318-324(2018).

    [51] K.-C. Fan et al. Experimental study of fabricating a microball tip on an optical fibre. J. Opt. A Pure Appl. Opt., 8, 782-787(2006).

    [52] L. Collot et al. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhys. Lett., 23, 327-334(1993).

    [53] M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko. Ultimate Q of optical microsphere resonators. Opt. Lett., 21, 453-455(1996).

    [54] M. Kimura, K. Toshima. Vibration sensor using optical-fiber cantilever with bulb-lens. Sens. Actuators A, 66, 178-183(1998).

    [55] J. Laine, B. E. Little, H. A. Haus. Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres. IEEE Photonics Technol. Lett., 11, 1429-1430(1999).

    [56] S.-K. Eah, W. Jhe, Y. Arakawa. Nearly diffraction-limited focusing of a fiber axicon microlens. Rev. Sci. Instrum., 74, 4969-4971(2003).

    [57] H. J. Kbashi. Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol., 28, 308-312(2012).

    [58] T. Saiki et al. Tailoring a high-transmission fiber probe for photon scanning tunneling microscope. Appl. Phys. Lett., 68, 2612-2614(1996).

    [59] G. Eisenstein, D. Vitello. Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers. Appl. Opt., 21, 3470-3474(1982).

    [60] T. Yatsui, M. Kourogi, M. Ohtsu. Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure. Appl. Phys. Lett., 73, 2090-2092(1998).

    [61] T. Saiki, K. Matsuda. Near-field optical fiber probe optimized for illumination–collection hybrid mode operation. Appl. Phys. Lett., 74, 2773-2775(1999).

    [62] P. Hoffmann, B. Dutoit, R.-P. Salathe. Comparison of mechanically drawn and protection layer chemically etchedoptical fiber tips. Ultramicroscopy, 61, 165-170(1995).

    [63] S. K. Mondal et al. Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action. Opt. Express, 17, 19470-19475(2009).

    [64] K. Maruyama et al. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. Anal. Chem., 78, 1904-1912(2006).

    [65] Z. Wang et al. Optically addressable array of optomechanically compliant glass nanospikes on the endface of a soft-glass photonic crystal fiber. ACS Photonics, 6, 2942-2948(2019).

    [66] D. J. White, P. R. Stoddart. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt. Lett., 30, 598-600(2005).

    [67] B.-C. Zheng et al. Miniature optical fiber current sensor based on a graphene membrane. Laser Photonics Rev., 9, 517-522(2015).

    [68] S. Cabrini et al. Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling. Microelectron. Eng., 83, 804-807(2006).

    [69] F. Schiappelli. Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling. Microelectron. Eng., 73-74, 397-404(2004).

    [70] D. Iannuzzi et al. Fiber-top atomic force microscope. Rev. Sci. Instrum., 77, 106105(2006).

    [71] D. Iannuzzi et al. Monolithic fiber-top sensor for critical environments and standard applications. Appl. Phys. Lett., 88, 053501(2006).

    [72] C. Liberale et al. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photonics, 1, 723-727(2007).

    [73] G. F. S. Andrade et al. Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips. Plasmonics, 8, 1113-1121(2013).

    [74] S. Kang et al. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl. Phys. Lett., 98, 241103(2011).

    [75] Y. Zhao. All-fiber vibration sensor based on nano-wire grid polarizer. Opt. Eng., 51, 050504(2012).

    [76] A. Dhawan, J. F. Muth. Engineering surface plasmon based fiber-optic sensors. Mater. Sci. Eng. B, 149, 237-241(2008).

    [77] A. Dhawan, M. D. Gerhold, J. F. Muth. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sens. J., 8, 942-950(2008).

    [78] M. Principe et al. Optical fiber meta-tips. Light Sci. Appl., 6, e16226(2017).

    [79] V. Savinov, N. I. Zheludev. High-quality metamaterial dispersive grating on the facet of an optical fiber. Appl. Phys. Lett., 111, 091106(2017).

    [80] A. Micco et al. Optical fiber tip templating using direct focused ion beam milling. Sci. Rep., 5, 15935(2015).

    [81] W. Shin et al. Microstructured fiber end surface grating for coarse WDM signal monitoring. IEEE Photonics Technol. Lett., 19, 550-552(2007).

    [82] J. K. Kim et al. Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system. IEEE Photonics Technol. Lett., 21, 21-23(2009).

    [83] X. Lan et al. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt. Lett., 34, 2285-2287(2009).

    [84] X. Ma et al. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser. Sensors, 10, 11064-11071(2010).

    [85] Y. Lin, J. Guo, R. G. Lindquist. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip. Opt. Express, 17, 17849-17854(2009).

    [86] Y. Lin et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors, 10, 9397-9406(2010).

    [87] M. Sanders et al. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron., 61, 95-101(2014).

    [88] M. Consales et al. Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano, 6, 3163-3170(2012).

    [89] S. Feng et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber. Small, 8, 1937-1944(2012).

    [90] M. Sasaki et al. Direct photolithography on optical fiber end. Jpn. J. Appl. Phys., 41, 4350-4355(2002).

    [91] E. G. Johnson et al. Fabrication of micro optics on coreless fiber segments. Appl. Opt., 42, 785-791(2003).

    [92] A. Petrušis et al. The align-and-shine technique for series production of photolithography patterns on optical fibres. J. Micromech. Microeng., 19, 047001(2009).

    [93] J. B. Kim, K. H. Jeong. Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography. Opt. Express, 25, 16854-16859(2017).

    [94] S. Choi et al. Interferometric inscription of surface relief gratings on optical fiber using azo polymer film. Appl. Phys. Lett., 83, 1080-1082(2003).

    [95] S. Feng et al. Fiber coupled waveguide grating structures. Appl. Phys. Lett., 96, 133101(2010).

    [96] X. Yang et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Opt. Express, 20, 24819-24826(2012).

    [97] J. Chandrappan et al. Optical coupling methods for cost-effective polymer optical fiber communication. IEEE Trans. Compon. Packag. Technol., 32, 593-599(2009).

    [98] C. Florea et al. Reduced Fresnel losses in chalcogenide fibers obtained through fiber-end microstructuring. Appl. Opt., 50, 17-21(2011).

    [99] J. Sanghera et al. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. Opt. Express, 18, 26760-26768(2010).

    [100] A. V. Volkov et al. Studying fabrication errors of the diffraction grating on the end face of a silver-halide fiber. Opt. Memory Neural Networks, 16, 263-268(2007).

    [101] H. Sakata, A. Imada. Lensed plastic optical fiber employing concave end filled with high-index resin. J. Lightwave Technol., 20, 638-642(2002).

    [102] G. Kostovski et al. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens. Bioelectron., 24, 1531-1535(2009).

    [103] J. Viheriälä et al. Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography. Electron. Lett., 43, 150-151(2007).

    [104] S. Scheerlinck et al. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment. J. Lightwave Technol., 27, 1415-1420(2009).

    [105] Y. Kanamori, M. Okochi, K. Hane. Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography. Opt. Express, 21, 322-328(2013).

    [106] S. Scheerlinck et al. Flexible metal grating based optical fiber probe for photonic integrated circuits. Appl. Phys. Lett., 92, 031104(2008).

    [107] G. Calafiore et al. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation. Nanotechnology, 27, 375301(2016).

    [108] G. Calafiore et al. Campanile near-field probes fabricated by nanoimprint lithography on the facet of an optical fiber. Sci. Rep., 7, 1651(2017).

    [109] G. Kostovski et al. Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach. Adv. Mater., 23, 531-535(2011).

    [110] M. Prasciolu et al. Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography. Microelectron. Eng., 67-68, 169-174(2003).

    [111] A. Ricciardi et al. Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol., 19, 772-784(2013).

    [112] A. Ricciardi et al. Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices. ACS Photonics, 1, 69-78(2013).

    [113] Y. Lin, Y. Zou, R. G. Lindquist. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express, 2, 478-484(2011).

    [114] Z. Huang et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl. Mater. Interfaces, 7, 17247-17254(2015).

    [115] P. D. Palma et al. Self-assembled colloidal photonic crystal on the fiber optic tip as a sensing probe. IEEE Photonics J., 9, 7102511(2017).

    [116] F. Galeotti, M. Pisco, A. Cusano. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation ‘lab-on-fiber’ optrodes. Nanoscale, 10, 22673-22700(2018).

    [117] H. H. Jeong et al. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosens. Bioelectron., 39, 346-351(2013).

    [118] B. Sciacca, T. M. Monro. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber. Langmuir, 30, 946-954(2014).

    [119] Y. Liu et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus. Nanoscale, 8, 10607-10614(2016).

    [120] F. L. Yap et al. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano, 6, 2056-2070(2012).

    [121] M. Pisco et al. Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips. ACS Photonics, 1, 917-927(2014).

    [122] M. Pisco et al. Nanosphere lithography for optical fiber tip nanoprobes. Light Sci. Appl., 6, e16229(2017).

    [123] I. Antohe et al. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology, 28, 215301(2017).

    [124] G. Quero et al. Nanosphere lithography on fiber: towards engineered lab-on-fiber SERS optrodes. Sensors, 18, 680(2018).

    [125] J. R. Rabeau et al. Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Appl. Phys. Lett., 86, 134104(2005).

    [126] H. Chen et al. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett., 42, 4279-4282(2017).

    [127] C. Huang et al. Fabrication of high-temperature temperature sensor based on dielectric multilayer film on sapphire fiber tip. Sens. Actuators A, 232, 99-102(2015).

    [128] D. W. Lee et al. Sapphire fiber high-temperature tip sensor with multilayer coating. IEEE Photonics Technol. Lett., 27, 741-743(2015).

    [129] D. Tan et al. Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett., 90, 071106(2007).

    [130] M. Malinauskas et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [131] H. E. Williams et al. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express, 19, 22910-22922(2011).

    [132] T. Gissibl et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun., 7, 11763(2016).

    [133] V. Hahn et al. Polarizing beam splitter integrated onto an optical fiber facet. Opt. Express, 26, 33148-33157(2018).

    [134] C. Liberale et al. Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photonics Technol. Lett., 22, 474-476(2010).

    [135] M. Malinauskas et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. J. Opt., 12, 124010(2010).

    [136] M. Malinauskas et al. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Opt. Lasers Eng., 50, 1785-1788(2012).

    [137] S. Bianchi et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt. Lett., 38, 4935-4938(2013).

    [138] M. Kowalczyk, J. Haberko, P. Wasylczyk. Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing. Opt. Express, 22, 12545-12550(2014).

    [139] H. Huang et al. Fabrication of micro-axicons using direct-laser writing. Opt. Express, 22, 11035-11042(2014).

    [140] T. Gissibl, M. Schmid, H. Giessen. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica, 3, 448-451(2016).

    [141] H. Wei, M. Chen, S. Krishnaswamy. Three-dimensional-printed Fabry–Perot interferometer on an optical fiber tip for a gas pressure sensor. Appl. Opt., 59, 2173-2178(2020).

    [142] T. Gissibl et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [143] Z. Xie et al. Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber. Adv. Opt. Mater., 3, 1232-1239(2015).

    [144] H. Wang et al. A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm. Opt. Laser Technol., 78, 110-115(2016).

    [145] J. A. Kim et al. Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria. Adv. Opt. Mater., 8, 1901934(2020).

    [146] S. Zhang et al. High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing. Adv. Opt. Mater., 7, 1900602(2019).

    [147] Q. Liu et al. ‘Optical tentacle’ of suspended polymer micro-rings on a multicore fiber facet for vapor sensing. Opt. Express, 28, 11730-11741(2020).

    [148] M. Yao et al. Optical 3D μ-printing of ferrule-top polymer suspended-mirror devices. IEEE SENSORS(2016).

    [149] J. Wu et al. In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid). Sens. Actuators B, 259, 833-839(2018). https://doi.org/10.1016/j.snb.2017.12.125

    [150] M. Yao et al. Optically 3-D μ-printed ferrule-top polymer suspended-mirror devices. IEEE Sens. J., 17, 7257-7261(2017).

    [151] M. Yao et al. Optical fiber-tip sensors based on in-situ micro-printed polymer suspended-microbeams. Sensors, 18, 1825(2018).

    [152] O. Soppera, C. Turck, D. J. Lougnot. Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR. Opt. Lett., 34, 461-463(2009).

    [153] O. Soppera, S. Jradi, D. J. Lougnot. Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters. J. Polymer Sci. Part A, 46, 3783-3794(2008).

    [154] R. Bachelot et al. Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization. Appl. Opt., 40, 5860-5871(2001).

    [155] M. Hocine et al. End-of-fiber polymer tip: manufacturing and modeling. Synth. Met., 127, 313-318(2002).

    [156] L. Xiao et al. Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers. Opt. Lett., 31, 1791-1793(2006).

    [157] C. Pang et al. Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides. Opt. Express, 17, 6939-6945(2009).

    [158] S. Valkai, L. Oroszi, P. Ormos. Optical tweezers with tips grown at the end of fibers by photopolymerization. Appl. Opt., 48, 2880-2883(2009).

    [159] C. Shi et al. A double substrate ‘sandwich’ structure for fiber surface enhanced Raman scattering detection. Appl. Phys. Lett., 92, 103107(2008).

    [160] Q. Bao et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [161] K. Wu et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 406, 214-229(2018).

    [162] F. Wang et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

    [163] S. Y. Set et al. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quantum Electron., 10, 137-146(2004).

    [164] J.-H. Chen et al. High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3–graphene hybrid structure. Optica, 4, 835-838(2017). https://doi.org/10.1364/OPTICA.4.000835

    [165] V. Calero et al. An ultra wideband-high spatial resolution-compact electric field sensor based on lab-on-fiber technology. Sci. Rep., 9, 8058(2019).

    [166] E. J. Smythe et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett., 9, 1132-1138(2009).

    [167] E. J. Smythe et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano, 3, 59-65(2009).

    [168] D. J. Lipomi et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Lett., 11, 632-636(2011).

    [169] I. W. Jung et al. Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J. Lightwave Technol., 29, 1367-1374(2011).

    [170] B. Wang et al. Photonic crystal cavity on optical fiber facet for refractive index sensing. Opt. Lett., 37, 833-835(2012).

    [171] X. He et al. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing. Appl. Phys. Lett., 108, 231105(2016).

    [172] G. Shambat et al. Optical fiber tips functionalized with semiconductor photonic crystal cavities. Appl. Phys. Lett., 99, 191102(2011).

    [173] G. Shambat et al. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications. Appl. Phys. Lett., 100, 213702(2012).

    [174] P. Jia, J. Yang. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale, 6, 8836-8843(2014).

    [175] P. Jia, J. Yang. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing. Appl. Phys. Lett., 102, 243107(2013).

    [176] P. Jia et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination. ACS Sens., 1, 1078-1083(2016).

    [177] J. Yu et al. Electrochemical plasmonic optical fiber probe for real-time insight into coreactant electrochemiluminescence. Sens. Actuators B, 321, 128469(2020).

    [178] E. Zhao et al. Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge. Nanotechnology, 28, 435504(2017).

    [179] Y. Liu et al. Simple and low-cost plasmonic fiber-optic probe as SERS and biosensing platform. Adv. Opt. Mater., 7, 1900337(2019).

    [180] C. L. Arce et al. Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet. IEEE Photonics Technol. Lett., 23, 890-892(2011).

    [181] C. Li et al. Nondestructive and in situ determination of graphene layers using optical fiber Fabry–Perot interference. Meas. Sci. Technol., 28, 025206(2017).

    [182] C.-L. Zhang et al. Lab-on-tip based on photothermal microbubble generation for concentration detection. Sens. Actuators B, 255, 2504-2509(2018).

    [183] M. Giaquinto et al. Cavity-enhanced lab-on-fiber technology: toward advanced biosensors and nano-opto-mechanical active devices. ACS Photonics, 6, 3271-3280(2019).

    [184] A. A. Said et al. Carving fiber-top cantilevers with femtosecond laser micromachining. J. Micromech. Microeng., 18, 035005(2008).

    [185] B. Sun et al. Simultaneous measurement of pressure and temperature by employing Fabry–Perot interferometer based on pendant polymer droplet. Opt. Express, 23, 1906-1911(2015).

    [186] H. Won Baac et al. Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett., 97, 234104(2010).

    [187] R. Ansari et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light Sci. Appl., 7, 75(2018).

    [188] C. Li, X. Peng, J. Liu. Fiber-tip photoacoustic probe with MoS2-PDMS composite coating for temperature and density-induced ultrasonic speed tuning. OSA Continuum, 1, 488-495(2018). https://doi.org/10.1364/OSAC.1.000488

    [189] E. Zhang, P. Beard. A miniature all-optical photoacoustic imaging probe. Proc. SPIE, 7899, 78991F(2011).

    [190] J. A. Guggenheim et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

    [191] R. J. Colchester et al. Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett., 104, 173502(2014).

    [192] S. Noimark et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging. Adv. Funct. Mater., 26, 8390-8396(2016).

    [193] M. C. Finlay et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light Sci. Appl., 6, e17103(2017).

    [194] A. Koshelev et al. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications. Opt. Lett., 41, 3423-3426(2016).

    [195] J. Kim et al. Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber. IEEE Photonics Technol. Lett., 16, 2499-2501(2004).

    [196] K. Kyung-Rok, C. Selee, K. Oh. Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension. IEEE Photonics Technol. Lett., 15, 1100-1102(2003).

    [197] A. Tuniz, M. A. Schmidt. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics, 7, 1279-1298(2018).

    [198] L. Kong et al. Protruding-shaped SiO2-microtip: from fabrication innovation to microphotonic device construction. Opt. Lett., 44, 3514-3517(2019). https://doi.org/10.1364/OL.44.003514

    [199] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [200] C. Xu, F. W. Wise. Recent advances in fiber lasers for nonlinear microscopy. Nat. Photonics, 7, 875-882(2013).

    [201] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [202] S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser. Opt. Express, 22, 1058-1064(2014).

    [203] P. Cheng et al. Mode-locked and Q-switched mode-locked fiber laser based on a ferroferric-oxide nanoparticles saturable absorber. Opt. Express, 28, 13177-13186(2020).

    [204] S. Y. Set et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol., 22, 51-56(2004).

    [205] K. Kieu, F. W. Wise. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photonics Technol. Lett., 21, 128-130(2009).

    [206] H. G. Rosa, E. A. T. de Souza. Pulse generation and propagation in dispersion-managed ultralong erbium-doped fiber lasers mode-locked by carbon nanotubes. Opt. Lett., 37, 5211(2012).

    [207] Y. Luo et al. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets. Laser Phys. Lett., 14, 110002(2017).

    [208] D. Li et al. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes. Sci. Rep., 8, 2738(2018).

    [209] Z. Zhang et al. Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes. IEEE J. Sel. Top. Quantum Electron., 24, 1100906(2018).

    [210] H. Zhang et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett., 95, 141103(2009).

    [211] D. Popa et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [212] D. Popa et al. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett., 98, 073106(2011).

    [213] H. Mu et al. Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics, 2, 832-841(2015). https://doi.org/10.1021/acsphotonics.5b00193

    [214] M. R. Islam et al. Chronology of Fabry–Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14, 7451-7488(2014).

    [215] J. Shao et al. A new hydrogen sensor based on SNS fiber interferometer with Pd/WO3 coating. Sensors, 17, 2144(2017). https://doi.org/10.3390/s17092144

    [216] H. Yan et al. A fast response hydrogen sensor with Pd metallic grating onto a fiber’s end-face. Opt. Commun., 359, 157-161(2016).

    [217] C. Yu et al. Fiber-optic Fabry–Perot hydrogen sensor coated with Pd-Y film. Photonic Sens., 5, 142-145(2015).

    [218] Y. Li et al. Optical cascaded Fabry–Perot interferometer hydrogen sensor based on Vernier effect. Opt. Commun., 414, 166-171(2018).

    [219] G. Zhang, M. Yang, Y. Wang. Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing. Opt. Commun., 329, 34-37(2014).

    [220] S. Tang et al. Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration. Opt. Express, 23, 22826-22835(2015).

    [221] R. Kitture et al. Nanocomposite modified optical fiber: a room temperature, selective H2S gas sensor: studies using ZnO-PMMA. J. Alloys Compd., 695, 2091-2096(2017).

    [222] D. Pawar, B. V. B. Rao, S. N. Kale. Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry–Perot interferometer. Analyst, 143, 1890-1898(2018). https://doi.org/10.1039/C7AN01891F

    [223] L. Sansone et al. Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sens. Actuators B, 202, 523-526(2014).

    [224] M. Debliquy et al. Optical fibre NO2 sensor based on lutetium bisphthalocyanine in a mesoporous silica matrix. Sensors, 18, 740(2018). https://doi.org/10.3390/s18030740

    [225] M.-J. Yin et al. Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord. Chem. Rev., 376, 348-392(2018).

    [226] Y.-N. Zhang et al. Recent advancements in optical fiber hydrogen sensors. Sens. Actuators B, 244, 393-416(2017).

    [227] D. Pawar, B. V. Bhaskara Rao, S. N. Kale. Highly porous graphene coated optical fiber in Fabry-Perot interferometric mode for NH3 gas sensing. 13th Int. Conf. Fiber Opt. Photon.(2016).

    [228] T. Mak et al. Optical fiber sensor for the continuous monitoring of hydrogen in oil. Sens. Actuators B, 190, 982-989(2014).

    [229] A. Aray et al. Plasmonic fiber optic hydrogen sensor using oxygen defects in nanostructured molybdenum trioxide film. Opt. Lett., 44, 4773-4776(2019).

    [230] B. Wu et al. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Opt. Fiber Technol., 34, 91-97(2017).

    [231] S. Tabassum, R. Kumar, L. Dong. Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing. IEEE Sens. J., 17, 7262-7272(2017).

    [232] J. C. Echeverría, M. Faustini, J. J. Garrido. Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sens. Actuators B, 222, 1166-1174(2016).

    [233] S. Ruan, H. Ebendorff-Heidepriem, Y. Ruan. Optical fibre turn-on sensor for the detection of mercury based on immobilized fluorophore. Measurement, 121, 122-126(2018).

    [234] X. Zheng et al. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir, 24, 4394-4398(2008).

    [235] X. Yang et al. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem., 83, 5888-5894(2011).

    [236] A. Sanchez-Solis et al. Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering. Opt. Lett., 44, 4997-5000(2019).

    [237] C. Credi et al. Fiber-cap biosensors for SERS analysis of liquid samples. J. Mater. Chem. B, 8, 1629-1639(2020).

    [238] J. Zhang et al. Tapered fiber probe modified by Ag nanoparticles for SERS detection. Plasmonics, 11, 743-751(2016).

    [239] J. Cao, D. Zhao, Y. Qin. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes. Talanta, 194, 895-902(2019).

    [240] J. Shin, B. T. Bosworth, M. A. Foster. Single-pixel imaging using compressed sensing and wavelength-dependent scattering. Opt. Lett., 41, 886-889(2016).

    [241] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [242] C. Genet, T. W. Ebbesen. Light in tiny holes. Nature, 445, 39-46(2007).

    [243] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [244] Z. Zhang et al. On-fiber plasmonic interferometer for multi-parameter sensing. Opt. Express, 23, 10732-10740(2015).

    [245] Y. Liang et al. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Sci. Rep., 9, 7379(2019).

    [246] B. Du et al. Compact plasmonic fiber tip for sensitive and fast humidity and human breath monitoring. Opt. Lett., 45, 985-988(2020).

    [247] Y. Wang, F. Liu, X. Zhang. Flexible transfer of plasmonic photonic structures onto fiber tips for sensor applications in liquids. Nanoscale, 10, 16193-16200(2018).

    [248] T. Yang et al. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection. Opt. Laser Technol., 101, 468-478(2018).

    [249] H. T. Kim, M. Yu. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface plasmon polariton resonances for multiparameter sensing. Sci. Rep., 9, 1922(2019).

    [250] A. Dhawan et al. FIB fabrication of metallic nanostructures on end-faces of optical fibers for chemical sensing applications. J. Vac. Sci. Technol. B, 26, 2168-2173(2008).

    [251] P. Malara et al. Resonant enhancement of plasmonic nanostructured fiber optic sensors. Sens. Actuators B, 273, 1587-1592(2018).

    [252] N. Wang et al. Nanotrimer enhanced optical fiber tips implemented by electron beam lithography. Opt. Mater. Express, 8, 2246-2255(2018).

    [253] A. Aliberti et al. Microgel assisted lab-on-fiber optrode. Sci. Rep., 7, 14459(2017).

    [254] M. Giaquinto et al. Optimization strategies for responsivity control of microgel assisted lab-on-fiber optrodes. Sensors, 18, 1119(2018).

    [255] L. Scherino et al. A time-efficient dip coating technique for the deposition of microgels onto the optical fiber tip. Fibers, 6, 72(2018).

    [256] Y. Zhu, R. A. Dluhy, Y. Zhao. Development of silver nanorod array based fiber optic probes for SERS detection. Sens. Actuators B, 157, 42-50(2011).

    [257] M. Consales et al. Metasurface-enhanced lab-on-fiber biosensors. Laser Photonics Rev., 2000180(2020).

    [258] H. E. Arabi et al. A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet. Opt. Express, 21, 28083-28094(2013).

    [259] P. Reader-Harris, A. Di Falco. Nanoplasmonic filters for hollow core photonic crystal fibers. ACS Photonics, 1, 985-989(2014).

    [260] H. Kim et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express, 25, 30290-30303(2017).

    [261] H. Kim et al. Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming. Opt. Express, 25, 8366-8385(2017).

    [262] M. Principe et al. Evaluation of fiber-optic phase-gradient meta-tips for sensing applications. Nanomater. Nanotechnol., 9, 184798041983272(2019).

    [263] J. Yang et al. Photonic crystal fiber metalens. Nanophotonics, 8, 443-449(2019).

    [264] A. Xomalis et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun., 9, 182(2018).

    [265] C. Chen et al. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Lett., 12, 125-132(2012).

    [266] Y. Pang, R. Gordon. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett., 11, 3763-3767(2011).

    [267] K. Wang et al. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun., 2, 469(2011).

    [268] A. N. Grigorenko et al. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics, 2, 365-370(2008).

    [269] M. L. Juan et al. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 5, 915-919(2009).

    [270] J. M. Ehtaiba, R. Gordon. Beaming light through a bow-tie nanoaperture at the tip of a single-mode optical fiber. Opt. Express, 27, 14112-14120(2019).

    [271] J. Berthelot et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol., 9, 295-299(2014).

    [272] R. M. Gelfand, S. Wheaton, R. Gordon. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Opt. Lett., 39, 6415-6417(2014).

    [273] A. A. Saleh et al. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Opt. Express, 24, 20593-20603(2016).

    [274] H. Pahlevaninezhad et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

    [275] B.-C. Zheng, F. Xu. A compact fiber magnetic sensor based on graphene NEMS(2015).

    [276] J. Y. Wu et al. Broadband MoS2 field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater., 30, 1705880(2018). https://doi.org/10.1002/adma.201705880

    [277] W. Choi et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater., 24, 5832-5836(2012). https://doi.org/10.1002/adma.201201909

    [278] X. Gan et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883-887(2013).

    [279] F. H. Koppens et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [280] Q. H. Wang et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [281] W. W. Zhao, J. J. Xu, H. Y. Chen. Photoelectrochemical DNA biosensors. Chem. Rev., 114, 7421-7441(2014).

    [282] K. Esquivel et al. Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Res., 43, 3593-3603(2009). https://doi.org/10.1016/j.watres.2009.05.035

    [283] X. T. Zheng et al. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens. Bioelectron., 26, 4484-4490(2011).

    [284] S. Yu et al. 2D materials for optical modulation: challenges and opportunities. Adv. Mater., 29, 1606128(2017).

    [285] M. Liu et al. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [286] X. Gan et al. Graphene-assisted all-fiber phase shifter and switching. Optica, 2, 468-471(2015).

    [287] J.-H. Chen et al. An all-optical modulator based on a stereo graphene–microfiber structure. Light Sci. Appl., 4, e360(2015).

    [288] I. V. Fedotov et al. Fiber-optic magnetic-field imaging. Opt. Lett., 39, 6954-6957(2014).

    [289] I. V. Fedotov et al. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber. Opt. Lett., 41, 472-475(2016).

    [290] S. M. Blakley et al. Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond. Opt. Lett., 40, 3727-3730(2015).

    [291] I. V. Fedotov et al. Electron spin manipulation and readout through an optical fiber. Sci. Rep., 4, 5362(2014).

    CLP Journals

    [1] Lingling Ma, Chaoyi Li, Luyao Sun, Zhenpeng Song, Yanqing Lu, Bingxiang Li. Submicrosecond electro-optical switching of one-dimensional soft photonic crystals[J]. Photonics Research, 2022, 10(3): 786

    Yifeng Xiong, Fei Xu. Multifunctional integration on optical fiber tips: challenges and opportunities[J]. Advanced Photonics, 2020, 2(6): 064001
    Download Citation