• Photonics Research
  • Vol. 9, Issue 6, 958 (2021)
Guang-Zhao Xu1、2、3、†, Wei-Jun Zhang1、2、3、4、†,*, Li-Xing You1、2、3、5、*, Jia-Min Xiong1、2、3, Xing-Qu Sun1、2、3, Hao Huang1、3, Xin Ou1、3, Yi-Ming Pan1、2、3, Chao-Lin Lv1、3, Hao Li1、3, Zhen Wang1、3, and Xiao-Ming Xie1、3
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (CAS), Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
  • 4e-mail: zhangweijun@mail.sim.ac.cn
  • 5e-mail: lxyou@mail.sim.ac.cn
  • show less
    DOI: 10.1364/PRJ.419514 Cite this Article Set citation alerts
    Guang-Zhao Xu, Wei-Jun Zhang, Li-Xing You, Jia-Min Xiong, Xing-Qu Sun, Hao Huang, Xin Ou, Yi-Ming Pan, Chao-Lin Lv, Hao Li, Zhen Wang, Xiao-Ming Xie. Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm[J]. Photonics Research, 2021, 9(6): 958 Copy Citation Text show less
    References

    [1] G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 79, 705-707(2001).

    [2] P. Hu, H. Li, L. You, H. Wang, Y. Xiao, J. Huang, X. Yang, W. Zhang, Z. Wang, X. Xie. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express, 28, 36884-36891(2020).

    [3] D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, V. B. Verma. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550  nm. Optica, 7, 1649-1653(2020).

    [4] W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, X. Xie. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron., 60, 120314(2017).

    [5] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, S. W. Nam. Detecting single infrared photons with 93% system efficiency. Nat. Photonics, 7, 210-214(2013).

    [6] H. Shibata, K. Shimizu, H. Takesue, Y. Tokura. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett., 40, 3428-3431(2015).

    [7] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, K. K. Berggren. Demonstration of sub-3  ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [8] D. Y. Vodolazov. Minimal timing jitter in superconducting nanowire single-photon detectors. Phys. Rev. Appl., 11, 014016(2019).

    [9] W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, X. Xie. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5  GHz. IEEE Trans. Appl. Supercond., 29, 2200204(2019).

    [10] H. Li, Y. Wang, L. You, H. Wang, H. Zhou, P. Hu, W. Zhang, X. Liu, X. Yang, L. Zhang, Z. Wang, X. Xie. Supercontinuum single-photon detector using multilayer superconducting nanowires. Photon. Res., 7, 1425-1431(2019).

    [11] F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, K. K. Berggren. Efficient single photon detection from 500  nm to 5  μm wavelength. Nano Lett., 12, 4799-4804(2012).

    [12] K. J. Wei, W. Li, H. Tan, Y. Li, H. Min, W. J. Zhang, H. Li, L. X. You, Z. Wang, X. Jiang, T. Y. Chen, S. K. Liao, C. Z. Peng, F. H. Xu, J. W. Pan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).

    [13] Y. Liu, Z. W. Yu, W. Zhang, J. Y. Guan, J. P. Chen, C. Zhang, X. L. Hu, H. Li, C. Jiang, J. Lin, T. Y. Chen, L. You, Z. Wang, X. B. Wang, Q. Zhang, J. W. Pan. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett., 123, 100505(2019).

    [14] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [15] T. Polakovic, W. Armstrong, G. Karapetrov, Z. E. Meziani, V. Novosad. Unconventional applications of superconducting nanowire single photon detectors. Nanomaterials, 10, 1198(2020).

    [16] Y. Hochberg, I. Charaev, S. W. Nam, V. Verma, M. Colangelo, K. K. Berggren. Detecting sub-GeV dark matter with superconducting nanowires. Phys. Rev. Lett., 123, 151802(2019).

    [17] L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, Y. Xiong. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength. Opt. Lett., 41, 3848-3851(2016).

    [18] C. M. Natarajan, M. G. Tanner, R. H. Hadfield. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol., 25, 063001(2012).

    [19] D. Y. Vodolazov. Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach. Phys. Rev. Appl., 7, 034014(2017).

    [20] Y. P. Korneeva, D. Y. Vodolazov, A. V. Semenov, I. N. Florya, N. Simonov, E. Baeva, A. A. Korneev, G. N. Goltsman, T. M. Klapwijk. Optical single-photon detection in micrometer-scale NbN bridges. Phys. Rev. Appl., 9, 064037(2018).

    [21] N. N. Manova, E. O. Smirnov, Y. P. Korneeva, A. A. Korneev, G. N. Goltsman. Superconducting photon counter for nanophotonics applications. J. Phys. Conf. Ser., 1410, 012147(2019).

    [22] I. Charaev, Y. Morimoto, A. Dane, A. Agarwal, M. Colangelo, K. K. Berggren. Large-area microwire MoSi single-photon detectors at 1550  nm wavelength. Appl. Phys. Lett., 116, 242603(2020).

    [23] J. Chiles, S. M. Buckley, A. Lita, V. B. Verma, J. Allmaras, B. Korzh, M. D. Shaw, J. M. Shainline, R. P. Mirin, S. W. Nam. Superconducting microwire detectors based on WSi with single-photon sensitivity in the near-infrared. Appl. Phys. Lett., 116, 242602(2020).

    [24] Y. Korneeva, D. Vodolazov, I. Florya, N. Manova, E. Smirnov, A. Korneev, M. Mikhailov, G. Goltsman, T. M. Klapwijk. Single photon detection in micron scale NbN and α-MoSi superconducting strips. EPJ Web Conf., 190, 04010(2018).

    [25] J. Huang, W. J. Zhang, L. X. You, X. Y. Liu, Q. Guo, Y. Wang, L. Zhang, X. Y. Yang, H. Li, Z. Wang, X. M. Xie. Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength. Supercond. Sci. Technol., 30, 074004(2017).

    [26] I. Charaev, A. Semenov, S. Doerner, G. Gomard, K. Ilin, M. Siegel. Current dependence of the hot-spot response spectrum of superconducting single-photon detectors with different layouts. Supercond. Sci. Technol., 30, 025016(2017).

    [27] W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, X. Xie. Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering. Phys. Rev. Appl., 12, 044040(2019).

    [28] M. W. Brenner, D. Roy, N. Shah, A. Bezryadin. Dynamics of superconducting nanowires shunted with an external resistor. Phys. Rev. B, 85, 224507(2012).

    [29] E. Toomey, Q.-Y. Zhao, A. N. McCaughan, K. K. Berggren. Frequency pulling and mixing of relaxation oscillations in superconducting nanowires. Phys. Rev. Appl., 9, 064021(2018).

    [30] J. Y. Juang, D. A. Rudman, J. Talvacchio, R. B. van Dover. Effects of ion irradiation on the normal state and superconducting properties of NbN thin films. Phys. Rev. B, 38, 2354-2361(1988).

    [31] J. R. Clem, V. G. Kogan. Kinetic impedance and depairing in thin and narrow superconducting films. Phys. Rev. B, 86, 174521(2012).

    [32] A. Semenov, B. Gunther, U. Bottger, H. W. Hubers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, N. A. Gippius. Optical and transport properties of ultrathin NbN films and nanostructures. Phys. Rev. B, 80, 054510(2009).

    [33] D. K. Liu, S. J. Chen, L. X. You, Y. L. Wang, S. Miki, Z. Wang, X. M. Xie, M. H. Jiang. Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias. Appl. Phys. Express, 5, 125202(2012).

    [34] S. Miki, T. Yamashita, H. Terai, Z. Wang. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt. Express, 21, 10208-10214(2013).

    [35] T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, Z. Wang. Origin of intrinsic dark count in superconducting nanowire single-photon detectors. Appl. Phys. Lett., 99, 161105(2011).

    [36] L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, X. M. Xie. Jitter analysis of a superconducting nanowire single photon detector. AIP Adv., 3, 072135(2013).

    [37] D. Y. Vodolazov, N. N. Manova, Y. P. Korneeva, A. A. Korneev. Timing jitter in NbN superconducting microstrip single-photon detector. Phys. Rev. Appl., 14, 044041(2020).

    [38] J. J. Wu, L. X. You, S. J. Chen, H. Li, Y. H. He, C. L. Lv, Z. Wang, X. M. Xie. Improving the timing jitter of a superconducting nanowire single-photon detection system. Appl. Opt., 56, 2195-2200(2017).

    [39] N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, K. K. Berggren. Superconducting nanowire detector jitter limited by detector geometry. Appl. Phys. Lett., 109, 152601(2016).

    [40] A. J. Kerman, D. Rosenberg, R. J. Molnar, E. A. Dauler. Readout of superconducting nanowire single-photon detectors at high count rates. J. Appl. Phys., 113, 144511(2013).

    [41] C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. Lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, X. Xie. NbN superconducting nanowire single-photon detector with an active area of 300  μm-in-diameter. AIP Adv., 9, 075214(2019).

    [42] C. Zhang, W. Zhang, L. You, J. Huang, H. Li, X. Sun, H. Wang, C. Lv, H. Zhou, X. Liu, Z. Wang, X. Xie. Suppressing dark counts of multimode-fiber-coupled superconducting nanowire single-photon detector. IEEE Photon. J., 11, 7103008(2019).

    [43] J. Chang, I. E. Zadeh, J. W. N. Los, J. Zichi, A. Fognini, M. Gevers, S. Dorenbos, S. F. Pereira, P. Urbach, V. Zwiller. Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution. Appl. Opt., 58, 9803-9807(2019).

    [44] R. Baghdadi, E. Schmidt, S. Jahani, I. Charaev, M. G. W. Müller, M. Colangelo, D. Zhu, K. Ilin, A. D. Semenov, Z. Jacob, M. Siegel, K. K. Berggren. Enhancing the performance of superconducting nanowire-based detectors with high-filling factor by using variable thickness. Supercond. Sci. Technol., 34, 035010(2021).

    [45] A. Semenov, A. Engel, H. W. Hubers, K. Il’in, M. Siegel. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips. Eur. Phys. J. B, 47, 495-501(2005).

    [46] A. Engel, A. Schilling. Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector. J. Appl. Phys., 114, 214501(2013).

    [47] A. Engel, J. J. Renema, K. Ilin, A. Semenov. Detection mechanism of superconducting nanowire single-photon detectors. Supercond. Sci. Technol., 28, 114003(2015).

    Guang-Zhao Xu, Wei-Jun Zhang, Li-Xing You, Jia-Min Xiong, Xing-Qu Sun, Hao Huang, Xin Ou, Yi-Ming Pan, Chao-Lin Lv, Hao Li, Zhen Wang, Xiao-Ming Xie. Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm[J]. Photonics Research, 2021, 9(6): 958
    Download Citation