• Photonics Research
  • Vol. 8, Issue 9, 1428 (2020)
Zeyu Zhang1、2、*, Justin C. Norman2, Songtao Liu3, Aditya Malik1, and John E. Bowers1、2、3
Author Affiliations
  • 1Electrical and Computer Engineering Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 2Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 3Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA
  • show less
    DOI: 10.1364/PRJ.397175 Cite this Article Set citation alerts
    Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, John E. Bowers. Integrated dispersion compensated mode-locked quantum dot laser[J]. Photonics Research, 2020, 8(9): 1428 Copy Citation Text show less
    References

    [1] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett., 40, 939-941(1982).

    [2] T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, Y. Arakawa. Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers. European Conference on Lasers and Electro-Optics, PDA_1(2011).

    [3] D. Bimberg, U. W. Pohl. Quantum dots: promises and accomplishments. Mater. Today, 14, 388-397(2011).

    [4] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett., 112, 251111(2018).

    [5] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 35, 2780-2787(2018).

    [6] Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, J. E. Bowers. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron., 25, 1900509(2019).

    [7] A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, J. E. Bowers. Quantum dot lasers for silicon photonics. Photon. Res., 3, B1-B9(2015).

    [8] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [9] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [10] D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon., 5, 1094-1100(2017).

    [11] Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528-533(2018).

    [12] S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, J. E. Bowers. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [13] Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).

    [14] Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, J. E. Bowers. Tunable quantum dot lasers grown directly on silicon. Optica, 6, 1394-1400(2019).

    [15] Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, J. E. Bowers. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express, 25, 27715-27723(2017).

    [16] S. Arafin, L. A. Coldren. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 24, 6100612(2017).

    [17] T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, J. E. Bowers. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol., 34, 20-35(2016).

    [18] C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, J. E. Bowers. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20-21(2020).

    [19] G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, R. Beausoleil. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels. 2018 IEEE International Semiconductor Laser Conference (ISLC), 1-2(2018).

    [20] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron., 24, 6000412(2018).

    [21] H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, J. Klamkin. Indium phosphide photonic integrated circuits for free space optical links. IEEE J. Sel. Top. Quantum Electron., 24, 6101806(2018).

    [22] W. W. Chow, M. Lorke, F. Jahnke. Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?. IEEE J. Sel. Top. Quantum Electron., 17, 1349-1355(2011).

    [23] J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, S. Pearton. Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas. J. Vac. Sci. Technol. A, 18, 1220-1224(2000).

    [24] S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, T. F. Krauss. Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett., 18, 1861-1863(2006).

    [25] G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron., 25, 2297-2306(1989).

    [26] K. Sato, A. Hirano, H. Ishii. Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings. IEEE J. Sel. Top. Quantum Electron., 5, 590-595(1999).

    [27] P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, K. Wecht. Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission. IEEE Photon. Technol. Lett., 7, 111-113(1995).

    [28] A. Hou, R. Tucker, G. Eisenstein. Pulse compression of an actively modelocked diode laser using linear dispersion in fiber. IEEE Photon. Technol. Lett., 2, 322-324(1990).

    [29] J. Wiesenfeld, M. Kuznetsov, A. Hou. Tunable, picosecond pulse generation using a compressed, modelocked laser diode source. IEEE Photon. Technol. Lett., 2, 319-321(1990).

    [30] M. J. Strain, P. M. Stolarz, M. Sorel. Passively mode-locked lasers with integrated chirped bragg grating reflectors. IEEE J. Quantum Electron., 47, 492-499(2011).

    [31] Y. Silberberg, P. Smith. Subpicosecond pulses from a mode-locked semiconductor laser. IEEE J. Quantum Electron., 22, 759-761(1986).

    [32] T. Schrans, R. Salvatore, S. Sanders, A. Yariv. Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers. Electron. Lett., 28, 1480-1482(1992).

    [33] M. Bagnell, J. Davila-Rodriguez, A. Ardey, P. Delfyett. Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth. Appl. Phys. Lett., 96, 211907(2010).

    [34] Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, J. Faist. Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers. IEEE Photon. Technol. Lett., 29, 2246-2249(2017).

    [35] D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Mart. Design of apodized linearly chirped fiber gratings for dispersion compensation. J. Lightwave Technol., 14, 2581-2588(1996).

    [36] W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, M. Sargent. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt. Express, 28, 5317-5330(2020).

    Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, John E. Bowers. Integrated dispersion compensated mode-locked quantum dot laser[J]. Photonics Research, 2020, 8(9): 1428
    Download Citation