• Photonics Research
  • Vol. 9, Issue 5, 865 (2021)
Zhen Chen1, Qian Zhou1, Huitian Du1, Yuan Yu1, Chuang Zhang2, Shenghao Han1, and Zhiyong Pang1、*
Author Affiliations
  • 1School of Microelectronics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.1364/PRJ.412860 Cite this Article Set citation alerts
    Zhen Chen, Qian Zhou, Huitian Du, Yuan Yu, Chuang Zhang, Shenghao Han, Zhiyong Pang. Immensely enhanced color-adjustable upconversion fluorescence in electron donor-acceptor exciplex chromophores doped with fluorescent emitters[J]. Photonics Research, 2021, 9(5): 865 Copy Citation Text show less
    References

    [1] K. Li, Z. Zhu, P. Cai, R. Liu, N. Tomczak, D. Ding, J. Liu, W. Qin, Z. Zhao, Y. Hu, X. Chen, B. Z. Tang, B. Liu. Organic dots with aggregation-induced emission (AIE dots) characteristics for dual-color cell tracing. Chem. Mater., 25, 4181-4187(2013).

    [2] L. M. Baugh, Z. Liu, K. P. Quinn, S. Osseiran, C. L. Evans, G. S. Huggins, P. W. Hinds, L. D. Black, I. Georgakoudi. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease. Nat. Biomed. Eng., 1, 914-924(2017).

    [3] Y. Tang, Y. Li, X. Hu, H. Zhao, Y. Ji, L. Chen, W. Hu, W. Zhang, X. Li, X. Lu, W. Huang, Q. Fan. “Dual lock-and-key”-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window. Adv. Mater., 30, 1801140(2018).

    [4] F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, M. Blanchard-Desce. Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments. Adv. Mater., 20, 4641-4678(2008).

    [5] M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, A. Rebane. Two-photon absorption properties of fluorescent proteins. Nat. Methods, 8, 393-399(2011).

    [6] H. M. Kim, B. R. Cho. Small-molecule two-photon probes for bioimaging applications. Chem. Rev., 115, 5014-5055(2015).

    [7] M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. Mccordmaughon, T. C. Parker, H. Rockel, S. Thayumanavan. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis (styryl) benzene derivatives. J. Am. Chem. Soc., 122, 9500-9510(2000).

    [8] G. S. He, L. Tan, Q. Zheng, P. N. Prasad. Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev., 108, 1245-1330(2008).

    [9] K. H. Myung, C. B. Rae. Two-photon materials with large two-photon cross sections. Structure-property relationship. Chem. Commun., 2, 153-164(2009).

    [10] Z. R. Grabowski, K. Rotkiewicz, W. Rettig. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev., 103, 3899-4031(2003).

    [11] Y. Li, T. Liu, H. Liu, M. Z. Tian, Y. Li. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res., 47, 1186-1198(2014).

    [12] M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. Engl., 48, 3244-3266(2009).

    [13] C.-L. Sun, J. Li, X.-Z. Wang, R. Shen, S. Liu, J.-Q. Jiang, T. Li, Q.-W. Song, Q. Liao, H.-B. Fu, J.-N. Yao, H.-L. Zhang. Rational design of organic probes for turn-on two-photon excited fluorescence imaging and photodynamic therapy. Chem, 5, 600-616(2019).

    [14] A. Cesaretti, P. Foggi, C. G. Fortuna, F. Elisei, A. Spalletti, B. Carlotti. Uncovering structure–property relationships in push–pull chromophores: a promising route to large hyperpolarizability and two-photon absorption. J. Phys. Chem. C, 124, 15739-15748(2020).

    [15] H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative. Chem. Commun., 48, 11392-11394(2012).

    [16] L. Xu, Q. Zhang. Recent progress on intramolecular charge-transfer compounds as photoelectric active materials. Sci. China Mater., 60, 1093-1101(2017).

    [17] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett., 98, 083302(2011).

    [18] K. Goushi, K. Yoshida, K. Sato, C. Adachi. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics, 6, 253-258(2012).

    [19] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492, 234-238(2012).

    [20] K. Goushi, C. Adachi. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Appl. Phys. Lett., 101, 023306(2012).

    [21] P. B. Deotare, W. Chang, E. Hontz, D. N. Congreve, L. Shi, P. D. Reusswig, B. Modtland, M. E. Bahlke, C. K. Lee, A. P. Willard, V. Bulovic, T. Van Voorhis, M. A. Baldo. Nanoscale transport of charge-transfer states in organic donor-acceptor blends. Nat. Mater., 14, 1130-1134(2015).

    [22] W. Liu, J.-X. Chen, C.-J. Zheng, K. Wang, D.-Y. Chen, F. Li, Y.-P. Dong, C.-S. Lee, X.-M. Ou, X.-H. Zhang. Novel strategy to develop exciplex emitters for high-performance OLEDs by employing thermally activated delayed fluorescence materials. Adv. Funct. Mater., 26, 2002-2008(2016).

    [23] K.-H. Kim, C.-K. Moon, J. W. Sun, B. Sim, J.-J. Kim. Triplet harvesting by a conventional fluorescent emitter using reverse intersystem crossing of host triplet exciplex. Adv. Opt. Mater., 3, 895-899(2015).

    [24] X. K. Liu, Z. Chen, C. J. Zheng, M. Chen, W. Liu, X. H. Zhang, C. S. Lee. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex. Adv. Mater., 27, 2025-2030(2015).

    [25] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun., 5, 4016(2014).

    [26] Q. Wang, Q.-S. Tian, Y.-L. Zhang, X. Tang, L.-S. Liao. High-efficiency organic light-emitting diodes with exciplex hosts. J. Mater. Chem. C, 7, 11329-11360(2019).

    [27] J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, P. Di Marco. Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis((di-4-tolylamino) phenyl) cyclohexane. Appl. Phys. Lett., 76, 2352-2354(2000).

    [28] H. J. Lee, J. Sohn, J. Hwang, S. Y. Park, C. Haeyoung, M. Cha. Triphenylamine-cored bifunctional organic molecules for two-photon absorption and photorefraction. Chem. Mater., 16, 456-465(2004).

    [29] C. D. Entwistle, T. B. Marder. Applications of three-coordinate organoboron compounds and polymers in optoelectronics. Chem. Mater., 16, 4574-4585(2004).

    [30] D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, J. Kido. Novel electron-transport material containing boron atom with a high triplet excited energy level. Chem. Lett., 36, 262-263(2007).

    [31] D. X. Cao, Z. Q. Liu, Q. Fang, G. B. Xu, G. Xue, G. Q. Liu, W. T. Yu. Blue two-photon excited fluorescence of several D-π-D, A-π-A, and D-π-A compounds featuring dimesitylboryl acceptor. J. Organomet. Chem., 689, 2201-2206(2004).

    [32] R. Kannan, G. S. He, J. T. Lin, P. N. Prasad, R. A. V. And, L. Tan. Toward highly active two-photon absorbing liquids. synthesis and characterization of 1,3,5-triazine-based octupolar molecules. Chem. Mater., 16, 185-194(2004).

    [33] Z. Liu, Q. Fang, D. Cao, D. Wang, G. Xu. Triaryl boron-based A-π-A vs triaryl nitrogen-based D-π-D quadrupolar compounds for single- and two-photon excited fluorescence. Org. Lett., 6, 2933-2936(2004).

    [34] Y. Seino, H. Sasabe, Y. J. Pu, J. Kido. High-performance blue phosphorescent OLEDs using energy transfer from exciplex. Adv. Mater., 26, 1612-1616(2014).

    [35] N. Bunzmann, S. Weissenseel, L. Kudriashova, J. Gruene, B. Krugmann, J. V. Grazulevicius, A. Sperlich, V. Dyakonov. Optically and electrically excited intermediate electronic states in donor: acceptor based OLEDs. Mater. Horiz., 7, 1126-1137(2020).

    [36] M. Regnat, K. P. Pernstich, K. H. Kim, J. J. Kim, F. Nüesch, B. Ruhstaller. Routes for efficiency enhancement in fluorescent TADF exciplex host OLEDs gained from an electro-optical device model. Adv. Electron. Mater., 6, 1900804(2020).

    [37] H. A. Al Attar, A. P. Monkman. Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron-hole separation. Adv. Mater., 28, 8014-8020(2016).

    [38] D. Graves, V. Jankus, F. B. Dias, A. Monkman. Photophysical investigation of the thermally activated delayed emission from films of m-MTDATA:PBD exciplex. Adv. Funct. Mater., 24, 2343-2351(2014).

    [39] Q. Huang, S. Zhao, P. Wang, Z. Qin, Z. Xu, D. Song, B. Qiao, X. Xu. Investigating the evolution of exciplex states in thermally activated delayed fluorescence organic light-emitting diodes by transient measurement. J. Lumin., 201, 38-43(2018).

    [40] D. Rehm, A. Weller. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem., 8, 259-271(1970).

    [41] B. Dereka, M. Koch, E. Vauthey. Looking at photoinduced charge transfer processes in the IR: answers to several long-standing questions. Acc. Chem. Res., 50, 426-434(2017).

    [42] D. J. Stewart, M. J. Dalton, R. N. Swiger, T. M. Cooper, J. E. Haley, L. S. Tan. Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers. J. Phys. Chem. A, 117, 3909-3917(2013).

    [43] M. Zhang, W. Liu, C. J. Zheng, K. Wang, Y. Z. Shi, X. Li, H. Lin, S. L. Tao, X. H. Zhang. Tricomponent exciplex emitter realizing over 20% external quantum efficiency in organic light-emitting diode with multiple reverse intersystem crossing channels. Adv. Sci., 6, 1801938(2019).

    [44] W. Zhu, R. Zheng, X. Fu, H. Fu, Q. Shi, Y. Zhen, H. Dong, W. Hu. Revealing the charge-transfer interactions in self-assembled organic cocrystals: two-dimensional photonic applications. Angew. Chem. Int. Ed. Engl., 54, 6785-6789(2015).

    [45] L. Sun, W. Zhu, W. Wang, F. Yang, C. Zhang, S. Wang, X. Zhang, R. Li, H. Dong, W. Hu. Intermolecular charge-transfer interactions facilitate two-photon absorption in styrylpyridine-tetracyanobenzene cocrystals. Angew. Chem. Int. Ed. Engl., 56, 7831-7835(2017).

    [46] D. Chen, Z. Wang, D. Wang, Y.-C. Wu, C.-C. Lo, A. Lien, Y. Cao, S.-J. Su. Efficient exciplex organic light-emitting diodes with a bipolar acceptor. Org. Electron., 25, 79-84(2015).

    [47] K.-H. Kim, S.-J. Yoo, J.-J. Kim. Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency. Chem. Mater., 28, 1936-1941(2016).

    [48] P. L. dos Santos, F. B. Dias, A. P. Monkman. Investigation of the mechanisms giving rise to TADF in exciplex states. J. Phys. Chem. C, 120, 18259-18267(2016).

    [49] M. Sarma, K. T. Wong. Exciplex: an intermolecular charge-transfer approach for TADF. ACS Appl. Mater. Interfaces, 10, 19279-19304(2018).

    [50] W. Hu, L. Guo, L. Bai, X. Miao, Y. Ni, Q. Wang, H. Zhao, M. Xie, L. Li, X. Lu, W. Huang, Q. Fan. Maximizing aggregation of organic fluorophores to prolong fluorescence lifetime for two-photon fluorescence lifetime imaging. Adv. Healthcare Mater., 7, 1800299(2018).

    [51] V. Jankus, P. Data, D. Graves, C. McGuinness, J. Santos, M. R. Bryce, F. B. Dias, A. P. Monkman. Highly efficient TADF OLEDs: how the emitter-host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency. Adv. Funct. Mater., 24, 6178-6186(2014).

    [52] C. Dai, Z. Wei, Z. Chen, X. Liu, J. Fan, J. Zhao, C. Zhang, Z. Pang, S. Han. Efficient two-photon excited fluorescence from charge-transfer cocrystals based on centrosymmetric molecules. Adv. Opt. Mater., 7, 1900838(2019).

    [53] H. Nakanotani, T. Furukawa, K. Morimoto, C. Adachi. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers. Sci. Adv., 2, e1501470(2016).

    [54] T. Higuchi, H. Nakanotani, C. Adachi. High-efficiency white organic light-emitting diodes based on a blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters. Adv. Mater., 27, 2019-2023(2015).

    [55] Z. Pang, D. Sun, C. Zhang, S. Baniya, O. Kwon, Z. V. Vardeny. Manipulation of emission colors based on intrinsic and extrinsic magneto-electroluminescence from exciplex organic light-emitting diodes. ACS Photon., 4, 1899-1905(2017).

    [56] Y. C. Lo, T. H. Yeh, C. K. Wang, B. J. Peng, J. L. Hsieh, C. C. Lee, S. W. Liu, K. T. Wong. High-efficiency red and near-infrared organic light-emitting diodes enabled by pure organic fluorescent emitters and an exciplex-forming cohost. ACS Appl. Mater. Interfaces, 11, 23417-23427(2019).

    [57] M. Wu, Z. Wang, Y. Liu, Y. Qi, J. Yu. Non-doped phosphorescent organic light-emitting devices with an exciplex forming planar structure for efficiency enhancement. Dyes Pigm., 164, 119-125(2019).

    [58] F. Gao, Q. Liao, Z. Z. Xu, Y. H. Yue, Q. Wang, H. L. Zhang, H. B. Fu. Strong two-photon excited fluorescence and stimulated emission from an organic single crystal of an oligo(phenylene vinylene). Angew. Chem. Int. Ed. Engl., 49, 732-735(2010).

    [59] T. He, Z. B. Lim, L. Ma, H. Li, D. Rajwar, Y. Ying, Z. Di, A. C. Grimsdale, H. Sun. Large two-photon absorption of terpyridine-based quadrupolar derivatives: towards their applications in optical limiting and biological imaging. Chem. Asian J., 8, 564-571(2013).

    [60] P. Xiao, J. Huang, Y. Yu, J. Yuan, D. Luo, B. Liu, D. Liang. Recent advances of exciplex-based white organic light-emitting diodes. Appl. Sci., 8, 1449(2018).

    [61] X. Song, D. Zhang, H. Li, M. Cai, T. Huang, L. Duan. Exciplex system with increased donor-acceptor distance as the sensitizing host for conventional fluorescent OLEDs with high efficiency and extremely low roll-off. ACS Appl. Mater. Interfaces, 11, 22595-22602(2019).

    [62] C. Zhang, Y. S. Zhao, J. Yao. Organic composite nanomaterials: energy transfers and tunable luminescent behaviors. New J. Chem., 35, 973-978(2011).

    Zhen Chen, Qian Zhou, Huitian Du, Yuan Yu, Chuang Zhang, Shenghao Han, Zhiyong Pang. Immensely enhanced color-adjustable upconversion fluorescence in electron donor-acceptor exciplex chromophores doped with fluorescent emitters[J]. Photonics Research, 2021, 9(5): 865
    Download Citation