• Photonics Research
  • Vol. 9, Issue 3, B71 (2021)
Xianxin Guo1、2、3、5、†,*, Thomas D. Barrett2、6、†,*, Zhiming M. Wang1、7、*, and A. I. Lvovsky2、4、8、*
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
  • 3Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
  • 4Russian Quantum Center, Skolkovo 143025, Moscow, Russia
  • 5e-mail: xianxin.guo@physics.ox.ac.uk
  • 6e-mail: thomas.barrett@physics.ox.ac.uk
  • 7e-mail: zhmwang@uestc.edu.cn
  • 8e-mail: alex.lvovsky@physics.ox.ac.uk
  • show less
    DOI: 10.1364/PRJ.411104 Cite this Article Set citation alerts
    Xianxin Guo, Thomas D. Barrett, Zhiming M. Wang, A. I. Lvovsky. Backpropagation through nonlinear units for the all-optical training of neural networks[J]. Photonics Research, 2021, 9(3): B71 Copy Citation Text show less
    References

    [1] E. Cambria, B. White. Jumping NLP curves: a review of natural language processing research. IEEE Comput. Intell. Mag., 9, 48-57(2014).

    [2] W. Rawat, Z. Wang. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput., 29, 2352-2449(2017).

    [3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman. Mastering the game of go with deep neural networks and tree search. Nature, 529, 484-489(2016).

    [4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl. Neural message passing for quantum chemistry. Proceedings of the 34th International Conference on Machine Learning, 70, 1263-1272(2017).

    [5] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, G. Carleo. Neural-network quantum state tomography. Nat. Phys., 14, 447-450(2018).

    [6] K. Hornik, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators. Neural Netw., 2, 359-366(1989).

    [7] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst., 2, 303-314(1989).

    [8] P. N. Tamura, J. C. Wyant. Two-dimensional matrix multiplication using coherent optical techniques. Opt. Eng., 18, 182198(1979).

    [9] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [10] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [11] L. De Marinis, M. Cococcioni, P. Castoldi, N. Andriolli. Photonic neural networks: a survey. IEEE Access, 7, 175827(2019).

    [12] A. N. Tait, T. F. De Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, P. R. Prucnal. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).

    [13] B. J. Shastri, R. A. Meyers, A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, H. T. Peng, P. R. Prucnal. Principles of neuromorphic photonics. Encyclopedia of Complexity and Systems Science(2018).

    [14] Y. Abu-Mostafa, D. Psaltis. Optical neural computers. Sci. Am., 256, 88-95(1987).

    [15] S. Jutamulia, F. Yu. Overview of hybrid optical neural networks. Opt. Laser Technol., 28, 59-72(1996).

    [16] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).

    [17] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [18] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, S. Du. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [19] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [20] T. W. Hughes, M. Minkov, Y. Shi, S. Fan. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018).

    [21] I. A. D. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, S. Fan. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7700412(2020).

    [22] M. M. P. Fard, I. A. Williamson, M. Edwards, K. Liu, S. Pai, B. Bartlett, M. Minkov, T. W. Hughes, S. Fan, T. A. Nguyen. Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express, 28, 12138-12148(2020).

    [23] Z. Cheng, H. K. Tsang, X. Wang, K. Xu, J.-B. Xu. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron., 20, 4400106(2013).

    [24] A. Jha, C. Huang, P. R. Prucnal. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt. Lett., 45, 4819-4822(2020).

    [25] M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, V. J. Sorger. All-optical nonlinear activation function for photonic neural networks. Opt. Mater. Express, 8, 3851-3863(2018).

    [26] K. Wagner, D. Psaltis. Multilayer optical learning networks. Appl. Opt., 26, 5061-5076(1987).

    [27] D. Psaltis, D. Brady, K. Wagner. Adaptive optical networks using photorefractive crystals. Appl. Opt., 27, 1752-1759(1988).

    [28] A. A. Cruz-Cabrera, M. Yang, G. Cui, E. C. Behrman, J. E. Steck, S. R. Skinner. Reinforcement and backpropagation training for an optical neural network using self-lensing effects. IEEE Trans. Neural Netw., 11, 1450-1457(2000).

    [29] T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L. Fang, Q. Dai. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit(2020).

    [30] T. Zhou, L. Fang, T. Yan, J. Wu, Y. Li, J. Fan, H. Wu, X. Lin, Q. Dai. In situ optical backpropagation training of diffractive optical neural networks. Photon. Res., 8, 940-953(2020).

    [31] J. Spall, X. Guo, T. D. Barrett, A. I. Lvovsky. Fully reconfigurable coherent optical vector-matrix multiplication. Opt. Lett., 45, 5752-5755(2020).

    [32] W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, H. Schmidt. Atomic spectroscopy on a chip. Nat. Photonics, 1, 331-335(2007).

    [33] R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, R. Löw. Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett., 107, 041101(2015).

    [34] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [35] M. J. Connelly. Semiconductor Optical Amplifiers(2007).

    [36] ATT Labs, Y. LeCun, C. Cortes, C. Burges. MNIST handwritten digit database(2010).

    [37] Y. LeCun, L. Bottou, Y. Bengio, P. Haffer. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324(1998).

    [38] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, D. Ha. Deep learning for classical Japanese literature(2018).

    [39] G. Cohen, S. Afshar, J. Tapson, A. van Schaik. EMNIST: an extension of MNIST to handwritten letters(2017).

    [40] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).

    [41] H. Bagherian, S. Skirlo, Y. Shen, H. Meng, V. Ceperic, M. Soljačić. On-chip optical convolutional neural networks(2018).

    [42] S. Xu, J. Wang, R. Wang, J. Chen, W. Zou. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt. Express, 27, 19778-19787(2019).

    [43] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).

    [44] D. A. Steck. Rubidium 87 D line data.

    [45] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lonoar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [46] M. Miscuglio, V. J. Sorger. Photonic tensor cores for machine learning. Appl. Phys. Rev., 7, 031404(2020).

    [47] T. D. Barrett. Tomdbar/all-optical-neural-networks: publication code (Version v1.0.0)(2020).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Xianxin Guo, Thomas D. Barrett, Zhiming M. Wang, A. I. Lvovsky. Backpropagation through nonlinear units for the all-optical training of neural networks[J]. Photonics Research, 2021, 9(3): B71
    Download Citation