• Photonics Research
  • Vol. 7, Issue 11, 1266 (2019)
Lin Xu1、4、†, Xiangyang Wang2、†, Tomáš Tyc3、5、†,*, Chong Sheng2, Shining Zhu2, Hui Liu2、6、*, and Huanyang Chen1、7、*
Author Affiliations
  • 1Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen 361005, China
  • 2National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 3Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
  • 4Institutes of Physical Science and Information Technology & Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, China
  • 5e-mail: tomtyc@physics.muni.cz
  • 6e-mail: liuhui@nju.edu.cn
  • 7e-mail: kenyon@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.001266 Cite this Article Set citation alerts
    Lin Xu, Xiangyang Wang, Tomáš Tyc, Chong Sheng, Shining Zhu, Hui Liu, Huanyang Chen. Light rays and waves on geodesic lenses[J]. Photonics Research, 2019, 7(11): 1266 Copy Citation Text show less
    References

    [1] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theoryof Propagation, Interference and Diffraction of Light, CUP Archive(2000).

    [2] R. K. Luneburg, M. Herzberger. Mathematical Theory of Optics(1964).

    [3] T. Tyc, L. Herzánová, M. Šarbort, K. Bering. Absolute instruments and perfect imaging in geometrical optics. New J. Phys., 13, 115004(2011).

    [4] T. Tyc, A. J. Danner. Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation. Phys. Rev. A, 96, 053838(2017).

    [5] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [6] T. Tyc, A. Danner. Frequency spectra of absolute optical instruments. New J. Phys., 14, 085023(2012).

    [7] T. Tyc, H. Chen, A. Danner, Y. Xu. Invisible lenses with positive isotropic refractive index. Phys. Rev. A, 90, 053829(2014).

    [8] T. Tyc. Spectra of absolute instruments from the WKB approximation. New J. Phys., 15, 065005(2013).

    [9] K. Zuzaňáková, T. Tyc. Scattering of waves by the invisible lens. J. Opt., 19, 015601(2016).

    [10] R. Rinehart. A solution of the problem of rapid scanning for radar antennae. J. Appl. Phys., 19, 860-862(1948).

    [11] S. Cornbleet, P. Rinous. Generalised formulas for equivalent geodesic and nonuniform refractive lenses. IEE Proc. H-Microw. Opt. Antennas, 128, 95(1981).

    [12] M. Šarbort, T. Tyc. Spherical media and geodesic lenses in geometrical optics. J. Opt., 14, 075705(2012).

    [13] S. Batz, U. Peschel. Linear and nonlinear optics in curved space. Phys. Rev. A, 78, 043821(2008).

    [14] V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, U. Peschel. Optics in curved space. Phys. Rev. Lett., 105, 143901(2010).

    [15] R. Bekenstein, J. Nemirovsky, I. Kaminer, M. Segev. Shape-preserving accelerating electromagnetic wavepackets in curved space. Phys. Rev. X, 4, 011038(2014).

    [16] A. Patsyk, M. A. Bandres, R. Bekenstein, M. Segev. Observation of accelerating wave packets in curved space. Phys. Rev. X, 8, 011001(2018).

    [17] V. H. Schultheiss, S. Batz, U. Peschel. Hanbury Brown and Twiss measurements in curved space. Nat. Photonics, 10, 106-110(2016).

    [18] R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, M. Segev. Control of light by curved space in nanophotonic structures. Nat. Photonics, 11, 664-670(2017).

    [19] U. Leonhardt. Perfect imaging without negative refraction. New J. Phys., 11, 093040(2009).

    [20] J. Perczel, T. Tyc, U. Leonhardt. Invisibility cloaking without superluminal propagation. New J. Phys., 13, 083007(2011).

    [21] U. Leonhardt, T. Philbin. Geometry and Light: The Science of Invisibility(2010).

    [22] A. L. Besse. Manifolds All of Whose Geodesics Are Closed(2012).

    [23] M. Šarbort. Non-Euclidean Geometry in Optics(2013).

    [24] C. Sheng, H. Liu, Y. Wang, S. Zhu, D. Genov. Trapping light by mimicking gravitational lensing. Nat. Photonics, 7, 902-906(2013).

    [25] C. Sheng, R. Bekenstein, H. Liu, S. Zhu, M. Segev. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun., 7, 10747(2016).

    [26] D. Wang, C. Liu, H. Liu, J. Han, S. Zhang. Wave dynamics on toroidal surface. Opt. Express, 26, 17820-17829(2018).

    CLP Journals

    [1] Chong Sheng, Hui Liu, Shi-Ning Zhu. Research progress of analogical gravitation on optical metamaterial chips[J]. Acta Physica Sinica, 2020, 69(15): 157802-1

    [2] Chenni Xu, Li-Gang Wang. Theory of light propagation in arbitrary two-dimensional curved space[J]. Photonics Research, 2021, 9(12): 2486

    Lin Xu, Xiangyang Wang, Tomáš Tyc, Chong Sheng, Shining Zhu, Hui Liu, Huanyang Chen. Light rays and waves on geodesic lenses[J]. Photonics Research, 2019, 7(11): 1266
    Download Citation