• Laser & Optoelectronics Progress
  • Vol. 59, Issue 2, 0200004 (2022)
Zhaoxiang Fang1、2, Juan Zhao1、*, Zhenzhong Xiao2、**, Shaoguang Shi2、3, Rui Sun3, and Liyan Zhu4
Author Affiliations
  • 1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen , Guangdong 518055, China
  • 2Shenzhen Orbbec Co., Ltd., Shenzhen , Guangdong 518057, China
  • 3College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen , Guangdong 518060, China
  • 4School of Information Science Technology, University of Science and Technology of China, Hefei , Anhui 230026, China
  • show less
    DOI: 10.3788/LOP202259.0200004 Cite this Article Set citation alerts
    Zhaoxiang Fang, Juan Zhao, Zhenzhong Xiao, Shaoguang Shi, Rui Sun, Liyan Zhu. Recent Advances of Binary Computed Holography in High-Speed Wavefront Modulation[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200004 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).

    [2] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [3] Gomes R M, Salles A, Toscano F et al. Observation of a nonlocal optical vortex[J]. Physical Review Letters, 103, 033602(2009).

    [4] Fang Z X, Chen Y, Ren Y X et al. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam[J]. Optics Express, 26, 7324-7335(2018).

    [5] Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 90, 133901(2003).

    [6] Garcés-Chávez V, McGloin D, Melville H et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 419, 145-147(2002).

    [7] McGloin D, Dholakia K. Bessel beams: diffraction in a new light[J]. Contemporary Physics, 46, 15-28(2005).

    [8] Durnin J, Miceli J,, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).

    [9] Fahrbach F O, Simon P, Rohrbach A. Microscopy with self-reconstructing beams[J]. Nature Photonics, 4, 780-785(2010).

    [10] Yuan Y, Lei T, Li Z et al. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams[J]. Scientific Reports, 7, 42276(2017).

    [11] Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 99, 213901(2007).

    [12] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014).

    [13] Vettenburg T, Dalgarno H I C, Nylk J et al. Light-sheet microscopy using an Airy beam[J]. Nature Methods, 11, 541-544(2014).

    [14] Fang Z X, Lu R D. Vortex symmetric Airy beam[J]. Proceedings of SPIE, 10932, 109320C(2019).

    [15] Grier D G. A revolution in optical manipulation[J]. Nature, 424, 810-816(2003).

    [16] Ji N, Milkie D E, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 7, 141-147(2010).

    [17] Gong L, Zhao Q, Zhang H et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering[J]. Light: Science & Applications, 8, 1-11(2019).

    [18] Krenn M, Handsteiner J, Fink M et al. Twisted photon entanglement through turbulent air across Vienna[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 14197-14201(2015).

    [19] Zhong M C, Wei X B, Zhou J H et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 4, 1768(2013).

    [20] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010).

    [21] Wang L V, Wu H I[M]. Biomedical optics: principles and imaging(2009).

    [22] Xu X, Liu H L, Wang L H. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature photonics, 5, 154-157(2011).

    [23] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [24] Yang J M, Li L, Shemetov A A et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star[J]. Science Advances, 5, eaay1211(2019).

    [25] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [26] Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 89, 015005(2017).

    [27] Liu Y, Lai P, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).

    [28] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device[J]. Annalen der Physik, 527, 447-470(2015).

    [29] Fang Z X, Zhao H Z, Chen Y et al. Accelerating polygon beam with peculiar features[J]. Scientific Reports, 8, 8593(2018).

    [30] Liang J, Kohn R N,, Becker M F et al. High-precision laser beam shaping using a binary-amplitude spatial light modulator[J]. Applied Optics, 49, 1323-1330(2010).

    [31] Yang J, Gong L, Xu X et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution[J]. Nature Communications, 8, 780(2017).

    [32] Wang D, Zhou E H, Brake J et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).

    [33] Ding X Y, Ren Y X, Gong L et al. Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication[J]. Applied Optics, 53, 5307-5311(2014).

    [34] Yang J M, Gong L, Shen Y C et al. Synthetic Bessel light needle for extended depth-of-field microscopy[J]. Applied Physics Letters, 113, 181104(2018).

    [35] Cheremkhin P A, Kurbatova E A. Binarization of digital holograms by thresholding and error diffusion techniques[C], Th3A.22(2019).

    [36] Eschbach R. Comparison of error diffusion methods for computer-generated holograms[J]. Applied Optics, 30, 3702-3710(1991).

    [37] Lee W H. III computer-generated holograms: techniques and applications[M]. Wolf E. Progress in optics, 119-232(1978).

    [38] Jiao S M, Zhang D F, Zhang C L et al. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-8(2020).

    [39] Fang Z X, Ren Y X, Gong L et al. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus[J]. Journal of Applied Physics, 118, 203102(2015).

    [40] Min K, Park J H. Quality enhancement of binary-encoded amplitude holograms by using error diffusion[J]. Optics Express, 28, 38140-38154(2020).

    [41] Gong L, Ren Y X, Xue G S et al. Generation of nondiffracting Bessel beam using digital micromirror device[J]. Applied Optics, 52, 4566-4575(2013).

    [42] Sueda K, Miyaji G, Miyanaga N et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses[J]. Optics Express, 12, 3548-3553(2004).

    [43] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [44] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [45] Shen Y, Campbell G T, Hage B et al. Generation and interferometric analysis of high charge optical vortices[J]. Journal of Optics, 15, 044005(2013).

    [46] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [47] Fang Z X, Zhao J, Xiao Z Z et al. Accelerating beam with multiple types of main lobes[J]. Proceedings of SPIE, 11698, 116980M(2021).

    [48] Lerner V, Shwa D, Drori Y et al. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device[J]. Optics Letters, 37, 4826-4828(2012).

    [49] Fang Z X. Wavefront shaping technique and its study in focusing through scattering medium[D](2019).

    [50] Chen Y, Wang T C, Ren Y X et al. Generalized perfect optical vortices along arbitrary trajectories[J]. Journal of Physics D: Applied Physics, 54, 214001(2021).

    [51] Zhao T, Ourselin S, Vercauteren T et al. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media[J]. Optics Letters, 46, 1165-1168(2021).

    [52] Liu Y F, Yu P P, Li Y M et al. Exploiting light field imaging through scattering media for optical encryption[J]. OSA Continuum, 3, 2968-2975(2020).

    [53] Zhao Q, Wang Z Q, Yu P P et al. Vector focusing through highly scattering media via binary amplitude modulation[J]. Applied Physics Express, 12, 062002(2019).

    [54] Wang Z Q, Zhao Q, Yu P P et al. Bat algorithm-enabled binary optimization for scattered light focusing[J]. Applied Physics Express, 12, 102002(2019).

    [55] Zhao Q, Wang Z Q, Hu X Y et al. 3D focusing through highly scattering media using PSF modulation[J]. Applied Physics Letters, 113, 191104(2018).

    [56] Hemphill A S, Shen Y, Liu Y et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Applied Physics Letters, 111, 221109(2017).

    [57] Si K, Tang L M, Du J C et al. Light focusing through scattering medium based on binary transmission matrix[J]. Chinese Journal of Lasers, 47, 0207038(2020).

    [58] Li Q Y, Zha X, Chen Z Y et al. Focusing of laser through strong scattering media with different thicknesses[J]. Acta Optica Sinica, 40, 0111016(2020).

    [59] Liu Y, Ma C, Shen Y et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 4, 280-288(2017).

    [60] Whyte G, Courtial J. Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm[J]. New Journal of Physics, 7, 117(2005).

    [61] Dresel T, Beyerlein M, Schwider J. Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption[J]. Applied Optics, 35, 6865-6874(1996).

    [62] Yang G Z, Dong B Z, Gu B Y et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 33, 209-218(1994).

    [63] Seldowitz M A, Allebach J P, Sweeney D W. Synthesis of digital holograms by direct binary search[J]. Applied Optics, 26, 2788-2798(1987).

    [64] Kang J H, Leportier T, Kim M et al. Non-iterative direct binary search algorithm for fast generation of binary holograms[J]. Optics and Lasers in Engineering, 122, 312-318(2019).

    [65] Wyrowski F. Iterative quantization of digital amplitude holograms[J]. Applied Optics, 28, 3864-3870(1989).

    [66] Zhang E Y, Noehte S, Dietrich C H et al. Gradual and random binarization of gray-scale holograms[J]. Applied Optics, 34, 5987-5995(1995).

    [67] Yang G, Jiao S M, Liu J P et al. Error diffusion method with optimized weighting coefficients for binary hologram generation[J]. Applied Optics, 58, 5547-5555(2019).

    [68] Eickhoff K, Köhnke D, Feld L et al. Tailored holograms for superimposed vortex states[J]. New Journal of Physics, 22, 123015(2020).

    [69] Hu X, Zhao Q, Yu P et al. Dynamic shaping of orbital-angular-momentum beams for information encoding[J]. Optics Express, 26, 1796-1808(2018).

    [70] Mirhosseini M, Magaña-Loaiza O S, Chen C et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics Express, 21, 30196-30203(2013).

    [71] Goorden S A, Bertolotti J, Mosk A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Optics Express, 22, 17999-18009(2014).

    [72] Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 57, 3859-3863(2018).

    [73] Goi H, Komuro K, Nomura T. Deep-learning-based binary hologram[J]. Applied Optics, 59, 7103-7108(2020).

    [74] Xie X W, Hu J, Shen Y B. Phase imaging based on random coding modulation of digital micro-mirror device[J]. Acta Optica Sinica, 40, 2311001(2020).

    [75] Chen D H, Gu S Y, Chen S C. Study of optical modulation based on binary masks with finite pixels[J]. Optics and Lasers in Engineering, 142, 106604(2021).

    [76] Chen Y, Fang Z X, Ren Y X et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 54, 8030-8035(2015).

    Zhaoxiang Fang, Juan Zhao, Zhenzhong Xiao, Shaoguang Shi, Rui Sun, Liyan Zhu. Recent Advances of Binary Computed Holography in High-Speed Wavefront Modulation[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200004
    Download Citation