• Spectroscopy and Spectral Analysis
  • Vol. 42, Issue 3, 970 (2022)
Peng SONG1、1;, Yuan-min CAI1、1; *;, Xiao-jun GENG2、2;, Hua GUO1、1;, Han-wu JI1、1;, and Guo-qing ZHANG3、3;
Author Affiliations
  • 11. School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
  • 22. Electrical & Computer Engineering Department, California State Univ, Northridge, CA 91330, USA
  • 33. School of Science, Xi’an Polytechnic University, Xi’an 710048, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2022)03-0970-08 Cite this Article
    Peng SONG, Yuan-min CAI, Xiao-jun GENG, Hua GUO, Han-wu JI, Guo-qing ZHANG. Study on Scattering Transmission Characteristics of Wireless UV Communication Based on Particle Size Distribution[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 970 Copy Citation Text show less
    Mie scattering diagram of spherical particles
    Fig. 1. Mie scattering diagram of spherical particles
    Size distribution curve of Haze particles(a): Haze L; (b): Haze M; (c): Haze H
    Fig. 2. Size distribution curve of Haze particles
    (a): Haze L; (b): Haze M; (c): Haze H
    Size distribution segmentation sketch of Haze H
    Fig. 3. Size distribution segmentation sketch of Haze H
    NLOS UV communication multiple scattering model
    Fig. 4. NLOS UV communication multiple scattering model
    Relationship between scattering and absorption coefficient and haze particle radius
    Fig. 5. Relationship between scattering and absorption coefficient and haze particle radius
    Path loss changing with haze particles density(a): d=100 m; (b): d=250 m; (c): d=500 m; (d): d=1 000 m
    Fig. 6. Path loss changing with haze particles density
    (a): d=100 m; (b): d=250 m; (c): d=500 m; (d): d=1 000 m
    Path loss changing with haze particle radius(a): d=100 m; (b): d=250 m; (c): d=500 m; (d): d=1 000 m
    Fig. 7. Path loss changing with haze particle radius
    (a): d=100 m; (b): d=250 m; (c): d=500 m; (d): d=1 000 m
    Experimental device for UV communication (a): Receiver; (b): Transmitter
    Fig. 8. Experimental device for UV communication (a): Receiver; (b): Transmitter
    The relationship between path loss and communication distance under different weather conditions (a): θt=10°, θr=10°; (b): θt=20°, θr=20°
    Fig. 9. The relationship between path loss and communication distance under different weather conditions (a): θt=10°, θr=10°; (b): θt=20°, θr=20°
    abrc/μmαβ
    Haze L4.975 7×10615.118 60.0721/2
    Haze M5.333 3×1048.944 30.0511/2
    Haze H4.000 0×10520.000 00.1021
    Table 1. Size distribution model parameters
    ParameterValue
    Wavelength λ260 nm
    Particle radius R0.15 μm
    The number of transmitted photons M206
    The number of multiple scattering N2
    Beam angle ϕt
    Field of view (FOV) ϕr40°
    Transmitter’s elevation angle θt[10°, 30°, 50°, 70°]
    Receiver’s elevation angle θr[10°, 30°, 50°, 70°]
    Emission power PT0.6 mW
    Detector active area A1.92 cm2
    Information rate RBT10 kbps
    Baseline distance d[10, 250, 500, 1 000 m]
    Table 2. Simulation parameter setting
    ParameterVisibility
    /km
    PM2.5 Concentration
    /(μg·m-3)
    PM10 Concentration
    /(μg·m-3)
    Temperature
    /℃
    Wind speed
    /(m·s-1)
    Relative
    humidity/%
    Fine weather10697121~248
    Severe fog and
    haze weather
    337441232~381
    Extremely severe fog
    and haze weather
    250961032~386
    Table 3. Weather parameters
    Fine
    weather
    Severe fog
    and haze
    weather
    Extremely severe
    fog and haze
    weather
    a2.529 64×1076.852 04×10746.617 7×107
    b21.05936.2432.52
    α1.9673.6143.437
    β0.6541.1970.956
    Table 4. Three weather size distribution parameters
    Peng SONG, Yuan-min CAI, Xiao-jun GENG, Hua GUO, Han-wu JI, Guo-qing ZHANG. Study on Scattering Transmission Characteristics of Wireless UV Communication Based on Particle Size Distribution[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 970
    Download Citation